REFLEX CONTROL FOR ROBOT SYSTEM

PRESERVATION, RELIABILITY, AND AUTONOMY

By

THOMAS S. WIKMAN

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF PH. D.

Thesis Advisor: Dr. Wyatt S. Newman

DEPARTMENT OF ELECTRICAL ENGINEERING AND APPLIED PHYSICS
CASE WESTERN RESERVE UNIVERSITY

AvuGgust 1994

(© Copyright 1994

by
THOMAS S. WIKMAN

REFLEX CONTROL FOR ROBOT SYSTEM
PRESERVATION, RELIABILITY, AND AUTONOMY

Abstract
By

THOMAS S. WIKMAN

This thesis is concerned with the use of reflex-like control strategies for
robot system reliability and autonomy. This thesis shows that reflex control is
a useful concept for achieving robot system safety, reliability and robustness.
The reflexive command filter for obstacle avoidance described in this thesis
is a fast, on-line and failsafe obstacle avoidance method that protects the
system from erroneous higher-level commands. The flee-reflexes introduced
in this thesis are fast, on-line methods that protect the system from moving
obstacles.

This thesis further shows that reflex control can be used as an important

component of complex autonomous systems. Highly efficient subgoal-based

1

path planners utilizing the reflexive command filter as a local operator are
described. The use of reflex control and fixed action patterns in an autonomous
sonar-based world mapping scheme is also described. The reflexes and other
low-level behaviors introduced in this thesis are functionally simple, execute
very quickly, and allow for modular and incremental design.

This thesis further discusses how reflexes should be constructed to be use-
ful, and how stability or cycling problems can be avoided when adding reflex
modules to a system, or building a system consisting of reflex modules and
other types of low-level behavioral modules. The objective of this thesis is
to demonstrate the usefulness of reflex-like control for robot system reliability
and autonomy through the numerous implementations described, and present

methods for performance analysis and design of reflex-like control systems.

11

This thesis i1s dedicated to
my wife
Claudia S. Wikman

and my son

Jacob T. Wikman

Acknowledgments

There are many people that were instrumental in helping me complete this
thesis and my educational goals. First, [would like to thank my thesis advisor
Dr. Wyatt Newman, whose work was the inspiration for my work, and whose
expertise, creativity, enthusiasm, understanding, and complete and generous
support made this thesis possible. Second, I would like to thank my committee,
Dr. Steve Phillips, Dr. Frank Merat, and Dr. Roger Quinn for their technical
assistance and time. I would further like to thank Mr. Yuandao Zhang for his
invaluable technical assistance.

I would also like to thank Michael Branicky my predecessor, whose work
provided me with ideas and inspiration, and whose continued assistance helped
the progression of my work. I am also grateful for the inspiration, assistance,
and software which was provided to me by my fellow students; Vinay Krish-
naswamy, Mark Dorhing, Dave Osborn, and Brian Mathewson.

I am indebted to all my fellow students who made the Mechatronics lab
a pleasant place to work. These people include Ashraf Kahn, Greg Glosser,
Peter Paul, Ronny Shalev, Tony Buop, Mitch Livstone, Kwok Chung Chan

(William), Robert Brunner, John Martens, Dean Velasco, Soheil Sayeh, Lorne

Jenkins, Craig Birkhimer, Nathan Woods, Kamal Souccar, Sean Higgins, Steve
Somes, Jonas Olsson, Werner Tseng, Robert Horning, Joseph Cenin, John
Murrin, David Sarafian, Alexandru Campean, Jay Patel, Kevin Ballou, and
Adam Johnston.

I would like to thank my parents and in-laws for all their invaluable sup-
port. Finally, I would like to thank my wife Claudia for her devoted and
unconditional support, and my son Jacob for being such a good boy.

This work was made possible through the support of the U.S. Dept. of
Energy Sandia National Laboratories under contract #18-4379F, and through
the support of CAISR (Center for Intelligent System Research), and CAMP
(Cleveland Advanced Manufacturing Program) in Cleveland, Ohio. This work
was also supported by NIST (National Institute of Standards and Technology).

Their support is gratefully acknowledged.

vi

Contents

Abstract i
Acknowledgments. v
List of Tables...... ... xii
List of Figures. xxiii
1. Introduction...... e 1
1.1 Motivation for Reflex Control 3
1.2 Objective and Thesis Organization 5
2. Experimental and Development System 8
2.1 The Computing System 8
2.2 The RRC Robot 11
2.3 Conclusions and Overview for Chapter 2 14
3. Reflexes in Biology and Robotics............................... 17
3.1 Reflexes and Fixed Action Patterns in Biology 17

3.2 Behavioral Robot Architectures and Implementations of Artifi-

cial Reflexes in Robotics 19

Vil

3.3 A Classification of Artificial Reflexes 27
3.3.1 A Classification of the Reflexes Described in this Thesis 35

3.4 Conclusions and Overview for Chapter 3 42

4. Configuration Space Generation for the Purpose of Reflex

Control. o 44
4.1 The 4D C-space Generator 49
4.2 Configuration Space Calculations 52
4.3 Conclusions and Overview for Chapter 4 61

5. Reflexive Collision Avoidance for System Preservation and

Reliability 64
5.1 The Braking Policy and Braking Prism 68
5.2 The Active Command Filter 72
5.3 The C-space Inspector 76
5.4 Examples of Braking Policies. 79

5.5 Using the Reflexive Command Filter for Fault Tolerance and

Autonomy 84
5.6 Conclusions and Overview for Chapter 5 87
6. The Reactive Trapezoidal Trajectory Generator.............. 90

7. On-line Path Planning and Obstacle Avoidance Using Reflex

Vil

Control. 95
7.1 Overview of Path Planning Methods 95
7.2 Obstacle Avoidance Using Reflex Control and Guiding Potential

Functionso 104
7.3 Implementations of Potential Function Layers in Discretized

Configuration Space oL 110
7.4 Experiments on a Kinematically Redundant Industrial Robot . 112
7.5 Obstacle Avoidance Using Reflex Control and Quickly Com-

putable Continuous Potential Functions 115

7.6 On-line Path Planning Using the Reflexive Command Filter . 118

7.7 Conclusions and Overview for Chapter 7 121
8. Reflexive Avoidance of Moving Obstacles..................... 123
8.1 The Wall Emulating Flee Reflex 123
8.2 The Block Set Emulating Flee Reflex 127
8.3 Conclusions and Overview for Chapter 8 131

9. Reflexes and Fixed Action Patterns in Sonar-based World

1LY -1 0§ 03 1 6= 133
9.1 A System Overview 135
9.2 Confidence Levels for World Exploration Guidance 140
9.3 Conclusions and Overview for Chapter 9 144

X

10.Stability and Performance of Reflexive and Behavioral Mod-

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Common Stability, Cycling, and Convergence Concepts 154
The Concept of Command-Tolerant and Monotonic Stability. . 164
10.2.1 The Concept of Command-Tolerant Stability. 164
10.2.2 The Concept of Monotonic-In/Monotonic-Out Stability. 170
The Use of Lyapunov Functions For Higher-Level Modules . . 175
10.3.1 Stability and Convergence Analysis for the Reflexive Com-

mand Filtero oo 178
10.3.2 The Use of Lyapunov Functions in the Case of Interact-

ing Modules 0L 183
Stability in the Sense of Lagrange and Quasi Lagrange 190

10.4.1 Stability and Convergence Analysis for the Flee Reflexes 194

Stable Interaction Among Simple and Triggered Containment

Reflexes, and Simple or Triggered Repulsors 199
The Use of Progress Measurement Functions 208
Final Conclusions and Overview for Chapter 10 216

11.Advice and Experience in the Context of the Design of Prac-

tical Behavioral Systems 218

11.1

Single Module Instability 223

11.2 Instability and Cycling Due to Unsuccesstully Closed Feedback
Loops e 224
11.2.1 Instability and Cycling in the Active Component Feed-

back Loop L 229
11.2.2 Instability and Cycling in the Virtual Sensor Feedback
Loop o o o 233

11.3 Instability and Cycling Due To Unsuccessfully Integrated Mod-

ules in Real-Time L. 235

11.4 Instability and Cycling Due To Unsuccessfully Integrated Mod-

ules in Non-Real-Time 238
11.5 Design Advice Regarding Reflexive or Behavioral Systems. . . 241
11.5.1 Possible Modules In A Behavioral Robot System. . . . 241

11.5.2 A Step By Step Procedure For Constructing A Robotic

Behavioral System 0L 244

11.6 Final Conclusions and Overview for Chapter 11 247
12.Conclusions and Suggestions for Further Work 250
12.1 Summary and conclusions 250
12.2 Further Work oo 255
A. Kinematic model for the RRC.................................. 260
Bibliography 271

xi

List of Tables

2.1

2.2

Al

A2

DH-parameters for the RRC robot. 13
The home angles of the RRC robot 14
DH-parameters for the RRC robot. 261
The home angles of the RRC robot 261

xii

List of Figures

2.1

2.2

2.3

2.4

3.1

3.2

The Computing System.

The RRC robot.

The joint rotation of the RRC robot, and the world coordinate

The joint coordinate systems of the RRC robot and the corre-
sponding parameters. L.
A modular description of a reflex action, a command dependent
reflex action, and a reflexive command filter
An illustration of a generic behavioral structure. The behav-
ioral command filters form a “stem” through which all com-
mands are passed and filtered. The behavioral action modules
are organized in layers. Within each layer the different modules
compete for control. The virtual switch controller represents

the interaction among the modules.

X111

14

15

28

3.3

3.4

4.1

4.2

4.3

4.4

If the robot enters the grey area the reflex is activated. This
is called the trigger region. The reflex is not deactivated un-
til the robot leaves the white area. The white area is called
the hysteresis region. The activation region is the union of the
hysteresis region and the trigger region.
Four reflexes R4, Rp, Rc, and Rp are active in four different
regions. R4 generates a specific command, Rp keeps the robot
within the activation region, R makes the robot converge to a
subset of the activation region, and Ep holds the robot where
it entered the activation region.
The shaded region is the Minkowski set difference. The refer-
ence point of the robot in this orientation cannot be placed in
the this region.o
If one inspection point is taken this entire voxel will be consider-
ing taken. If the inspection point also belongs to a neighboring
voxel, that voxel will also be considered taken
A. Demonstrates full range sweeps of a cylinder approximation
of the tool. B. Demonstrates an approximation of partial range
SWEEPS. « « v v e e e e e e e e e e e e e

A. The possibility of intersection between two objects is deter-

mined. B. Using inscribed spheres it is easy to show intersection.

x1v

34

35

46

93

96

57

3.1

5.2

3.3

5.4

3.9

3.6

5.7

3.8

3.9

6.1

7.1

7.2

The reflexive command filter.

Trajectory resulting from a braking policy defines a braking prism.

The new free-space prism is not approved until the braking
prism is contained within the intersection of the new free-space
prism and the previously approved free-space prism. The ap-
proved free-space prism is displayed in gray.
A new free-space prism in a cluttered environment. When the
braking prism is contained within the new free-space prism it
becomes the new approved free-space prism. The C-space that
had to be inspected is displayed in dark gray.
Search-fronts originating from last approved free-space prism.
The dynamics of the robot defines speed of search-fronts. . . .
Free-space prism evolves in C-space while the robot is moving.
Three different settings for the reflexive command filter.
All position requests located inside the approved free-space prism
are approved, all others are replaced.
Visibility graph. Solution path is shown in bold lines.

The Voronoi diagram. Solution path is shown in bold lines. . .

XV

66

70

75

7

78

78

30

80

83

91

96

97

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.11

7.12

Silhouette method in 2D and 3D. The silhouette curves in the
2D example are the boundary curves of the polygons. The link-
ing curves from are straight ines from start and goal. The el-
lipsoid in the 3D example has a cylindrical hole. 1t is projected
on the X-Y plane, with the resulting silhouette curves marked
with a black solid curve. The linking curves shown connects the
silhouette curves for the cylinder with the silhouette curve for
theellipsoid. 98

Subgoal network using straight line segments as a local operator. 99

Object dependent cell decomposition. 100
Object independent cell decomposition, using a grid. 100
[lustration of navigation function.. 103

The reflexive command filter will not overshoot any individual
joint goal en route to the final goal 106
False Energy Minima and Maxima Due to C-space Discretization111
[ustration of wave voxel values around two obstacles. 116
The distance measurements are illustrated in this figure as wave-
like equipotential lines. The potential function is easily derived
from current wave voxel value and the neighboring wave voxel
values. The resulting function is continuous and does not con-

tain local minima. 117

xvi

7.13 Reversal sets and F-regions.

7.14 Inter-region graph for 8 F-regions located in 3 adjacent C-space

8.1

8.2

8.3

8.4

9.1

The fictitious PW-10 wall pushes the RRC-robot away.
The flee Reflex in the system hierarchy. When an obstacle is

detected, higher-level commands are replaced by flee reflex com-

The PW-10 robot occupies different blocks depending on its
position. L

There are 24 blocks in the common workspace of the RRC and

If the robot has a task to perform or a destination to go to,
the robot attempts to complete these tasks, while the sonar-
based world mapping system interferes to protect the robot from
unknown obstacles. If the robot does not have a task to perform
the sonar-based world mapping system completely controls the
robot. In both cases the reflexive command filter protects the

robot from collisions with known obstacles.

xXvil

120

124

125

128

128

9.2

9.3

9.4

10.1

10.2

The sensor interpreting modules, the world guidance modules,
and the map building modules are all connected to each other.
The world guidance modules are behavioral modules, and are
displayed as virtual sensor and active component pairs.

An overview of the sonar-based world mapping system. The

fixed action patterns are displayed in gray and reflexes in dark

Obstacle A was discovered while the robot was completing a
task and was therefore only briefly investigated. Obstacle B is
a static premapped obstacle, obstacle C an obstacle that has
been investigated, and D a recently found obstacle located in
unexplored space. L
This Figure illustrates a Lyapunov function for a two dimen-
sional system. The equipotential curves of the Lyapunov func-
tions are also illustrated.o
Convergence to the union of all invariant sets M. V is constant
in the R region which means that Y =0 for arbitrary trajecto-
ries. If V is not constant everywhere in R, it must be the case
that only certain trajectories within R for which V is constant

are possible. L.

XViil

141

142

144

159

10.3

10.4

10.5

10.6

10.7

In the case illustrated here the paths will take the robot across

the region R and finally to the cavity inside R. In this cavity

Y < 0, except at the limit cycle and the minimum in the center.

Module A is generating an output to the servo-controller which
is stable with respect to an equilibrium point. Module B, which
consists of the robot and the servo-controller, generates a stable
output if either given a static input, or a variable input which
is stable with respect to an equilibrium point.
Two monotonic-in/monotonic-out stable modules connected via
a feedback loop.
Overview of a system consisting of a reflexive command filter,
a servo controller and the robot. 00
Three different Lyapunov functions for three different modules.
The system consisting of these modules complies with the re-
quirement above. Adding them together will not give a valid
global Lyapunov function. However, adding their system com-
patible Lyapunov functions V; will give a monotonically decreas-

ing and continuous Lyapunov function.

X1X

162

166

172

180

187

10.8 In the figure to the left, A is an encapsulating superset of B,
because we can find a non-zero sized ball, even for a boundary
point of B, which is a subset of A. In the figure to the right this
isnot possible. L

10.9 The concept of region stability replaces the equilibrium point
with a goal set. This goal set could for example be an invariant
set. The figure illustrates that for the Bgr chosen there is a
#(0) € B, so that Z(t) € Bpg for all future.

10.10If the robot enters the grey area the reflex is activated. This
is called the trigger region. The reflex is not deactivated un-
til the robot leaves the white area. The white area is called
the hysteresis region. The activation region is the union of the
hysteresis region and the trigger region.

10.11Four reflexes R4, Rp, Rc, and Rp are active in four different
regions. R4 generates a specific command, Rp keeps the robot
within the activation region, R makes the robot converge to a
subset of the activation region, and Ep holds the robot where

it entered the activation region.

191

193

201

10.121f R4 > Rp, R > R¢, and Re > Ry, this could lead to cycling. 204

10.13A connected set of regions.o

XX

10.141If the purpose of two adjacent reflexes R4, and Rp is to bring
the robot outside the activation regions, instability can result,
with or without a precedence list. The precedence list does not
matter in any of the cases when the activation regions do not
intersect.
10.15The respective activation regions for the flee reflex, hold reflex,
command module, and reflexive command filter. The reflexive
command filter resides at a lower level in the system hierarchy.
10.16 The robot in the picture can only move forward and therefore
must be turned towards the goal before moving.
11.1 Anillustration of a generic behavioral structure. The behavioral
command filters constitute the “stem” through which all com-
mands are passed and filtered. The behavioral action modules
are organized in layers. Within each layer the different modules
compete for control. The virtual switch controller represents
the interaction among the modules.
11.2 A module is badly designed and generates an unstable, and
finally unbounded output to the rest of the system, disregarding
all feedback loops. L
11.3 The system is unstable due to the unsuccessful closing of two

feedback loops.

xx1

206

209

211

219

220

11.4

11.5

11.6

11.7

11.8

11.9

The switching among the modules is performed unsuccessfully,
and generates cycling. For example, module A is repeatedly
reactivated under identical conditions.
The C-space Inspector is undecided about the free-space prisms
it generates in this example of a flawed design.
[lustration of two configurations that could cause instability : I.
Time delays, robot dynamics etc. could cause cycling problems
or instability when the active component in the reflex controller
depends on the robot state. II. Time delays, robot dynamics
etc. could cause instability or cycling problems when the virtual
sensor in the reflex controller depends on the robot state. . . .
Three feedback loops with increasingly smaller bandwidths the
further out the loopis.
Robot between two obstacles with flee potentials. Non-zero
minimum sized moves results in cycling around the resulting
MINITMUIML. .« . o v v e v e e e e e e e e e e e e e e e
Robot between two obstacles with flee potentials. A preplanned
path to the minimum, instead of on-line step-wise “next point”

calculations. L

XX11

222

224

226

227

230

11.10This system consists of an augmented task-space-based guiding
potential function and a reflexive command filter. The switch
control strategy must be chosen carefully. 236
11.11The control mode fails, switch control mode strategy might lead
to cycling if the two control modes are described by different
energy functions. oo Lo 238
A.1 The joint coordinate systems of the RRC robot and the corre-

sponding parameters. Lo 260

xx1i1

Chapter 1

Introduction

The word robot was first used in 1921 by the Czech playwright, novelist, and
essayist Karel Kapek in his satirical drama entitled R.U.R. (Rossum’s Univer-
sal Robots) [24].1t is derived from the Czech word robota, which literally means
“forced laborer” or “slave laborer”.

In 1946, George Devol, the acknowledged “father of the robot”, developed a
magnetic process controller that could be used as a general-purpose playback
device for controlling machines. It is generally acknowledged that the “‘robot
age” began in 1954 when Devol patented the first manipulator with a playback
memory. In 1962, General Motors installed the first commercial robot on one
of its assembly lines in a die-casting application.

The robots used in industry are usually strictly position-controlled devices.
While some processes, especially ones that are repeated and structured, are
easily automated using these devices, there are many processes which are not.
For robots to be most useful they need to be able to interact with their envi-
ronment, act autonomously, and maybe be intelligent.

Assuming autonomous, interactive, and inexpensive robots we can easily

imagine numerous fascinating applications of robotics.

1. Robots which are able to successfully interact with their environments
using strain gauges, force sensors and compliant motion algorithms, could

be used for :

(a) Materials handling requiring grabbing, pushing, pressing, pulling,
holding, rubbing, insertion, scraping, handling of objects of unspeci-

fied shapes, positions and sizes, etc..

(b) Grinding, window washing, painting objects of unspecified shapes or

inexact positions, waxing, etc..
(c) Handling of breakable materials.
(d) Handling of soft or sensitive materials, like animals and humans.
2. Robots which are able to employ vision systems, or other sensors for
object recognition, and from these sensors collect data and generate world

models that could be used for navigation, obstacle avoidance, or other

types of interaction, could be used for :
(a) Floor cleaning, lawn mowing, vacuuming, dusting, etc..

(b) Material and goods transportation.

(c¢) Robotic cars with advanced vision-based perception system could

replace manual driving, and thus save time, and millions of lifes. The

perception system in this case must be capable of identifying moving
and static obstacles (from a moving vehicle), figure out where the
road is, identify vehicles and other road obstacles, and to a certain
extent figure out distances to obstacles, and velocities of obstacles,

and read signs.

3. Voice interactive robots with perception, and compliant control capabili-

ties could be used for a variety of service jobs.

This list could go on for ever. The point is: the autonomous robot! is
not just another type of automation, or an advanced machine; it is a concept
as large as the concept of the machine. Robots will probably continue to be
improved and applied to new applications for centuries to come.

However, the quest for the interactive, autonomous and intelligent robot
turned out to be a very complex and not very well understood problem. The
problem has many aspects, and I will address one of them: if and how reflex-

like control methods can be used to achieve robust and autonomous systems.

1.1 Motivation for Reflex Control

Intelligent, autonomous robots require knowledge about themselves and their

environment and the ability to integrate this knowledge to make decisions

lor the intelligent machine, or the artificial creature

about how to act. Robots need to be able to utilize sensors, interpret the
sensor information, and use it as a basis for autonomous action. In nature
such abilities were long evolved and built up from robust underlying layers of
functionality.

“Evolution has spent most of its time on the essence of being and reacting
in a dynamic environment, not on intelligence” (Brooks 1990 [12]). Even very
primitive and non-intelligent animals, like insects and mollusks, are able to
behave autonomously in complex dynamic environments. These facts show
that the efforts to create intelligent robots before true autonomy has been
achieved, probably are misdirected. To create creature-like robots, which are
able to act independently and perform tasks in the real world, the robot must
first be able to react autonomously in a natural environment. Its behaviors
should be appropriate to performing the task at hand-as well as maintaining
survival.

The simplest form of animal behavior is the reflex. The defining character-
istic of a reflex is that the intensity and duration of the response is entirely
governed by the intensity and duration of the stimulus [6]. Another similar
definition is that the relationship between the stimulus and the response is
rigid [1]. Reflexes are used in animals for protective behavior, postural con-
trol, withdrawal from painful stimuli, and adaptation of gait to uneven terrain.

But reflexes also form a basis for more complex behavior patterns like walking,

running, flying, and jumping.

Reflex-like control strategies have been utilized by a handful of researchers
[8, 1, 79, 64, 55, 11] who have found it to be very useful in their robotic
application. This fact and the discussion above demonstrates that reflex-like

control strategies for robot systems should be further studied and utilized.

1.2 Objective and Thesis Organization

In this thesis I will define, classify and investigate artificial reflexes for robotics.
I will give several examples of useful implementations of artificial reflexes to
demonstrate the usefulness of artificial reflexes and show how reflex-like con-
trol systems can be built. My implementations will demonstrate that artificial
reflexes are useful in building autonomous, reliable, and robust robot systems.
[will also analyze the performance of reflexive systems and give advice regard-
ing how they should be built and integrated into complex robotic systems.

This thesis is organized as follows.

1. In Chapter 2 I will describe the experimental system I used to implement
the different reflex modules and other systems. All experiments were

performed on real robotic systems.

2. In Chapter 3 I will give a brief description of the characteristics of reflexes

and fixed action patterns in biological systems. I will further give an

overview of earlier implementations of reflex-like control strategies and
other behavioral control strategies in robotics. Finally, artificial reflexes
are classified and the potential use of the different types of reflexes is

discussed.

. T am using configuration space as a predefined map for my obstacle avoid-
ance reflexes and reflex-based path planning algorithms. In Chapter 4 1

will describe my methods for configuration space generation.

. Chapter 5 contains a description of the “reflexive command filter” and
the “C-space inspector” which together comprise an approach to reflexive
static collision-avoidance in 4D configuration space. 1 will explain how
the collision-avoidance reflexes are used to protect the robot system from

collisions that would result from higher level software errors.

. Chapter 6 describes so-called reactive trajectory generators which were

found to be very useful in the context of reflexive collision avoidance.

. Chapter 7 starts with an overview of existing robot motion planning meth-
ods. The rest of this chapter explains how reflexive collision avoidance
can be used in conjunction with higher-level path-planning algorithms
and obstacle avoidance methods, and how reflexive collision-avoidance
can improve the performance of the system and simplify the construc-

tion of such higher-levels. The higher-level path-planning algorithms and

10.

11.

obstacle avoidance methods which are described are :

(a) Guiding Potential Functions.
(b) Quickly computable potential functions.

(c) A fast 4D path-planning algorithm.

Chapter 8 contains a description of a few so called “flee reflexes” which

are used for on-line dynamic collision avoidance.

. In Chapter 9 an autonomous sonar-based world mapping system for in-

dustrial manipulators is described. This system consists of interacting

reflex behaviors and “fixed action patterns”?.

. In Chapter 11 I will address performance, stability, cycling, and sampling

issues regarding artificial reflexes and the integration of artificial reflexes

into complex systems.

In Chapter 10 I will give advice on how to analyze and construct systems

containing reflexive behaviors using the concepts derived in Chapter 10.

Finally in Chapter 12 I will summarize my experiences and discuss the

usefulness and feasibility of artificial reflexes in robotics.

2See 3 for a definition of fixed action pattern

Chapter 2

Experimental and Development System

The experimental system used in implementing this work consist of a Robotics
Research Corporation Manipulator K-2107THR (hereafter RRC robot) and a
Sun Microsystems 3/75 Workstation interfaced to a VME-based multipro-
cessor system. I also used a Hitachi PW-10 in my experiments and I also
had the opportunity to use an Adept-I and an Adept-II robot. For my
ultrasound-based world mapping system I used Migatronics sonar transduc-
ers, and a VME-based sonar processing board developed at Sandia National

Laboratories!, to interface the transducer signals.

2.1 The Computing System

The computing system used to control the RRC robot is shown in Figure 2.1.
It consists of a Sun Microsystems 3/75 Workstation and an external VME card
cage equipped with single board computers, and 8 Megabyte RAM board, a

GPIB interface board or alternatively a BIT-3 board.

!The Xycom board

Ether Net
RRC robot

PW-10

Encoder

Board +

Digital

PWM GPIB board or

Output BIT-3hoard
Bus | 8M Globa Xycom
Window | Memory CPU2:6 | o

K|
‘ A
¢ 4) /
»)
? /4 [

Sun 3/75 Workgtation
VME Card Cage

Figure 2.1: The Computing System.

The Sun 3/75 Workstation is interfaced to other workstations and a file
server via Ethernet and the external VME card cage through a bus win-
dow. The Sun workstation contains a 16.6MHz MC68020 microprocessor, a
MC68881 floating point coprocessor, 4 Megabytes of RAM, and a 12 slot VME
backplane. The workstation is used for code development for the single board
computers, as well as for user interface, diagnostics, and real time graphics
while the robot is in operation. The external VME card cage also contains a
12-slot VME backplane. Connected to its common VME backplane are five
single board computers. Each of the single board computers contains a 20 MHz
MC68020 microprocessor,a MC68881 floating point coprocessor, 1 Megabyte

of RAM, and a VME-bus interface. Code developed and compiled on the Sun

10

is downloaded into the single board computers to run in “real-time” without
any operating system overhead. All code was written in the “C” language.

The digital /O board is used for reading the joint encoders of the PW-10
and transmitting digital commands to the PW-10 amplifiers. The 8 Megabytes
RAM board serves as a global memory that can be accessed by the Sun as well
as the single board computers. The GPIB-interface board reads data from
Multibus and transmits it further to the global memory in the VME cage.
The BIT-3 board is capable of mapping a small portion of global memory
directly to an address space on the Multibus side. The Sandia ultrasound
board is used when sonar sensors are utilized. It generates electrical pulses to
the sonar transducers and interprets the returning echo.

For the experiments described in this research, the individual computer
boards were programmed to execute separate but coordinated tasks. Examples

of implementations are :

e Two arm collision avoidance : A combined servo-1/O program for the
PW-10 runs on computer board 2. An 1/0 program for the RRC runs on
computer board 3, and a servo program for the RRC runs on computer
board 4. The reflexive command filter described in Chapter 5 consist of
two submodules, the “active command filter” and the “C-space inspec-
tor”. The active command filter run on computer board 5 and a C-space

inspector on computer board 6. The graphical user interface through

11

which the operator controls the robot runs on the Sun.

e 4D path planning utilizing reflex control : An I/O program for the RRC
runs on computer board 2, and a servo program for the RRC is running
on computer board 3. Active reflexes run on computer board 5 and a
C-space inspector on computer board 6. A path planning algorithm runs
on computer board 4. The graphical user interface through which the

operator controls the robot runs on the Sun.

e Sonar-based world mapping system. An I/O program for the RRC runs
on computer board 2, and a servo program for the RRC is running on
computer board 3. Active reflexes are running on computer board 5 and
a C-space inspector on computer board 6. A sonar data analysis program
runs on computer board 4. The graphical user interface through which
the operator controls the robot runs on the Sun. The rest of the system

modules run on the Sun 3/75.

2.2 The RRC Robot

The RRC robot is a seven degree-of-freedom kinematically redundant manipu-
lator. The repeatability of the RRC robot is extremely high. It has DC motors
and harmonic drives. The RRC robot has resolvers and strain gauges mounted

at the transmission output. It weight 500 lbs and has a payload capacity of

12

4 lbs. It is intended for research and space exploration. A photograph of the

RRC robot in its natural mechatronics environment is shown in Figure 2.2.

B

Figure 2.2: The RRC robot.

The RRC robot was originally equipped with an independent PID-controller
for each joint, and was controlled by algorithms running on Intel processors in
an open multibus-based architecture. Work was done by Mark E. Dohring to
connect the RRC robot to the VME-bus environment in the mechatronics lab.
A program written in the PLM/86 programming language runs on the Intel
processor and reads the A/D converters, the resolvers and other sensor data
and transmits the data to the VME-cage where one of the processor boards

converts the digitized data is into SI-units.

13

Joint (92 (673 dZ a;
1 6,1 90° | 0| O
O, | 90° | 0 | a2

2
3 O3 | —90° | d3 | a3
4 04 90° | O |a4d

Table 2.1: DH-parameters for the RRC robot.

The communication between Multibus and the VME-bus was originally a
two step process in which the Multibus sent data to a GPIB interface which
in turn sent the data to the VME-bus. Now the Multibus sends data directly
to the VME-bus. This is made possible through a BIT-3 interface. The BIT-3
interface is capable of mapping a small portion of the Global Memory board
in the VME-cage directly to Multibus.

The seven possible joint rotations of the RRC robot are displayed in Figure
2.3. The kinematic redundancy makes the RRC robot very interesting with
respect to obstacle avoidance. The extra degree of freedom allows the robot
not only to position its tool arbitrarily in space, but also allows it to position
the robot body so that obstacles can be avoided.

The joint coordinate systems I chose are shown in Figure 2.4, and the cor-
responding Denavit Hartneberg parameters are shown Table 2.1. The values
of §; in the configuration shown are given in Table 2.2. A detailed overview

of the robot kinematics and the corresponding matrixes are given in appendix

Al

14

O4
O ij 5 o,
A | —
e’ 4
World Origo
97 QO

ZW

o

0, L 92 U

Floor

Figure 2.3: The joint rotation of the RRC robot, and the world coordinate
system.

6, =0°
0, = 90°
03 = 0°
04 = 90°

Table 2.2: The home angles of the RRC robot

2.3 Conclusions and Overview for Chapter 2

The experimental system used in implementing this work consist of a Robotics
Research Corporation Manipulator K-2107THR and a Sun Microsystems 3/75
Workstation interfaced to a VME-based multiprocessor system. The sonar-
based world mapping system used Migatronics sonar transducers, and a VME-

based sonar processing board developed at Sandia National Laboratories® to

2The Xycom board

15

XZ

Floor

Figure 2.4: The joint coordinate systems of the RRC robot and the corre-
sponding parameters.

interface the transducer signals.

Code developed and compiled on the Sun is downloaded into the single
board computers to run in “real-time” without any operating system overhead.
However, it is only possible to run one application at a time on a specific
processor-board. A typical application running on this system is the two arm

collision avoidance scheme:

e A combined servo-1/O program for the PW-10 runs on computer board
2. An I/0O program for the RRC runs on computer board 3, and a servo

program for the RRC runs on computer board 4. The reflexive command

16

filter described in Chapter 5 consist of two submodules, the “active com-
mand filter” and the “C-space inspector”. The active command filter run
on computer board 5 and a C-space inspector on computer board 6. The
graphical user interface through which the operator controls the robot

runs on the Sun.

Unlike a system based on Lynx or Vxworks this system has very few fea-
tures. You cannot read directly from the file server disk to the processor
boards, you don’t have multi-tasking, you cannot set a fixed loop frequency
for your applications, etc. However, you do not have any operating system
overhead and the system 1s inexpensive. Each application program runs asyn-

chronously on a dedicated processor board at maximum speed.

Chapter 3

Reflexes in Biology and Robotics

In this chapter I will give an overview of reflexes in biology, behavioral robot
architectures, and the history of reflex control in robotics. 1 will briefly describe
a functional simulation of a locust locomotion system. Finally I will classify

artificial reflexes for robotics.

3.1 Reflexes and Fixed Action Patterns in

Biology

Reflexes have been studied in many context, and in many animals. These
studies demonstrate that reflexes provide autonomous, multiresponsive sys-
tems, which functionality to a large extent can be understood and simulated.
Detailed descriptions of the neuron connections and their functionality have
for example been done in the case of the walking locust [16, 21, 18, 17, 19]. In
the case of the walking locust there are basically two types of reflexes involved
in the locomotion of the leg : avoidance reflexes and resistance reflexes. The

avoidance reflex moves the leg away from mechanical stimulation of external

17

18

sensors of the leg, with the precise form of movement depending upon the
spatial location of the stimulated receptors. The resistance reflex is initiated
by internal sensors, like pressure, tension and knee angle sensors, and ensures
that an imposed movement of a joint is resisted by an opposing muscular force.
The two types of reflexes oppose each other to give rise to a leg motion, and a
final relaxation of the leg [16]. In [6, 26, 7] a biologically inspired architecture
for locomotion in a hexapod robot.

However, the intensity and the sign of reflexes can also change depending
upon internal factors [6]. For example the local reflexes of one leg in a locust
can only occur if the positions and movements of other legs are appropriate
at that time. Intersegmental intern neurons, which are neurons mediating
signals between segments of neurons, mediate the afferents from other legs,
and gates local reflexes through the neurons that mediate the local reflex [20].
An important thing to note is that animals typically respond to a small subset
of the total amount of sensory information [1].

Fized-patterns are a somewhat more complex form of behavior. In [6] a
fized action pattern is defined as an extended, largely stereotyped response
to a sensory stimulus. Fixed action patterns can be seen as sets of reflexive
behaviors triggered by each other. In Section 9 I will give an example of how
reflexes and fixed action patterns together can generate more complex robot

behavior.

19

3.2 Behavioral Robot Architectures and Im-

plementations of Artificial Reflexes in Robotics

Because of the problems traditional Al has had in implementing fast func-
tioning, autonomous systems in noisy, unpredictable environments, and with
sensors giving incorrect information, scientists have been looking into alter-
native architectures for robots. These new architectures have much in com-
mon with biological systems. Examples of such architectures are Rodney A.
Brooks’ famous subsumption architecture [12, 13, 15, 29, 30|, Rajko Tomovics
reflex-controlled prosthesis [8, 71, 72, 70], and situated-automata-models [35],
situated agents with goals [51], and animal behavior-based architectures [6, 1]
etc.

Brooks argues in [12] that “Artificial intelligence research has foundered in
a sea of incrementalism”. No one is sure where to go improving on earlier
demonstrations of techniques in symbolic manipulation of ungrounded repre-
sentations. The traditional approach has emphasized the abstract manipula-
tion of symbols, whose grounding in physical reality has rarely been achieved.
R.A. Brooks argues further that the “symbol system hypothesis” upon which,
“classical” Al is based, is fundamentally flawed. In classical Al none of the
modules are generating the behavior of the total system, only specific com-

binations of them. In what Brooks calls novelle Al, each module by itself

20

generates a behavior. Novelle Al, is according to Brooks, founded upon the
“Physical grounding hypothesis”. Brooks defines the Symbol system hypothesis
as “Intelligence operates on a system of symbols” and the Physical grounding
hypothesis as “To build a system that is intelligent it is necessary to have its
representation grounded in the physical world”.

Traditionally mobile robot control has been decomposed for synthesis based
on information processing functions. Brooks’ approach is to have task-achieving
behaviors as his primary direction for decomposing the control system [15].
Brooks’ subsumption architecture basically consists of layers of control sys-
tems incrementally built to let the robot operate at increasing levels of com-
petence [13]. Each layer provides an independent behavior, and its output is a
direct result of some properties of the sensors connected to that layer. Higher
layers of control can inhibit lower layers of control. There is no need for a
central control module, and it is possible to incrementally insert more layers
to increase the robot’s competence. Each layer is built from a set of small
processors which send messages to each other. The processors run completely
asynchronously, monitoring their input wires, and sending messages on their
output wires [13]. The lowest layer in the subsumption architecture employs
reflex control for obstacle avoidance [15]. Brooks has very successfully imple-
mented his architecture on several mobile robots: Herbert, which navigated

in office buildings and stole Coke cans [12, 29]; and Squirt a miniature robot

21

which demonstrated autonomous behavior [29, 30].

Leslie P Kaelbling and Stanley. J. Rosenschein have been working on the
so called situated-Automata-model, which models the world as a pair of inter-
acting automata, one corresponding to the physical environment and the other
to the embedded agent. An embedded agent is defined as a directly reacting
agent which is continuously informed about the environment. The embedded
agent consists of a perception component which delivers information, and an
action component which maps this information to action (information-action-
pair). The action components are not only functions of information but also
functions of the goals the agent is pursuing for the moment. These goals are
extracted from higher order goals with the help of information. For example
“robot hungry” can be extracted to “find apple in right drawer”, from the
fact that there is an apple in the right drawer. They constructed a language,
Gapps, that generates run time programs which are reactive, does parallel ac-
tions, and carries out strategies made up of very low-level actions, based on
this approach [35].

Pattie Maes suggests an architecture which successfully combines the direct
coupling between perception and action with goal orientedness. Her system
consists of competence modules, which, if certain preconditions are fulfilled,

become active to a certain degree. What activation level a competence module

22

is set to depends on the currently observed situation consisting of all proposi-
tions that are currently observed by their associated virtual sensor, the global
goals the module can achieve, and the activation levels of so called “successors”
and “predecessors”. If a competence module’s action pattern is such that it
naturally should be followed by another module’s action pattern, the latter is
a successor of the first. If a competence module’s action pattern is such that it
is desirable, but for the moment not executable, it raises the activation level of
its predecessors. If the activation level of a competence module fulfills certain
conditions (thresholds etc.) it takes control and performs its task [51].

Randy D. Beer, Hillel Chiel and Leon S. Sterling constructed a biologically
insprired architecture locomotion in a hexapod robot. They used a simplified
neuronal model for the locomotion, and replaced the neurons in that model
with an often used electronic model for neuron compartments [6].

Rajko Tomovic is the first person to use the concept of reflex control. Al-
ready in 1962 he constructed a robotic hand which behaved in a reflex-like
manner. His hand showed unusual mechanical simplicity and flexibility and
the hand was controlled electrically instead of through complex mechanical
designs. More importantly there was direct feedback between the pressure
transducers and the motor force. The fingers would close around arbitrarily

shaped objects in a reflexive manner [71]. Tomovic improved his hand and

23

his sensors and control methods [72], and later developed a reflex-based archi-
tecture which he applied to artificial limbs like legs and hands [70, 8]. In his
reflex-based architecture, pattern-recognizing modules monitored bionic sen-
sors and set Boolean variables which were used to set the limb in different
states and in which different transition trajectories were generated.

Tracey L. Anderson and Max Donath used animal behavior as a basis for
robot design. They found in their studies of animals, that many types of behav-
iors and especially reflexes often use a very small part of the provided sensory
information. They further found that the behaviors are often independent
of each other and sometimes conflicted with each other. They implemented
reflexive behavior on a mobile robot called scarecrow. Examples of artificial

reflexes they implemented were :

e Avoidance behaviors :

— A halt function for collision with static objects.

— A repulsive force function for moving obstacles.

e Attraction behaviors

— A location attraction reflex which looks for desired locations.

— A forward attraction reflex which generates commands resulting in

motion along the current orientation of the robot.

24

e Object following and attraction reflexes.

e Open space attraction reflexes.

The reflexes generated potentials which were combined into a resulting force
which was further fed as a command to the motor [1].

Another very interesting implementation is the reflex control for slippage
and contact in the prototype leg for the Automatic Suspension Vehicle devel-
oped by Ho Cheng Wong and David E. Orin [79]. The reflex control for the
prototype leg is supposed to be used when there is an abrupt change in leg-
environment interaction. The reflex control is based on minimal knowledge of
the environment, it overrides higher-level commands, and it executes quickly.
They modeled the entire walk cycle as; lift-off; transfer; placement; contact,
and support. Examples of situations in the walk cycle, where reflex control is

useful are :

e There is no firm foothold before the kinematic limits are exceeded, which
implies that the leg stepped into a hole or a ditch. This might occur in

the placement phase.

e Unexpected motion when the foot comes in contact with an obstacle.

This might occur during the transfer phase.

e When foot contact takes place the transition trajectory must change

abruptly and the foot must be protected from damage. This takes place

25

during the contact phase.

e Abrupt changes in velocity and force in the support phase indicate foot
slippage.

In their analysis of their reflexive control architecture they asserted that
reflexes consist of three phases: initiation of the reflex; the transitory control
of the reflex; and the completion of the reflex. If during the support phase, a
non-zero foot velocity and an abrupt actuator pressure change is detected, this
would indicate slippage, and the slippage reflex would be initiated. During the
transitory control phase in the slippage reflex, the commanded tangential force
is quickly reduced. The completion of the reflex takes place when the velocity
is below a certain threshold value and the lift actuator error is small.

Another Reflex application was implemented by David W. Payton on the
Autonomous land vehicle [64]. He describes a control hierarchy based on im-
mediacy. The higher-level modules perform tasks involving time consuming
assimilation, while the lower level modules perform tasks requiring the great-
est immediacy. The layers of the control system in his model are : mission
planning, map-based planning, local planning with high level maneuvering,
and reflexive planning. Connected to the control layers is also a layered per-
ception system. The reflexive planning module consist of a large selection of
expert sub-modules, each of which is capable of making decisions about vehicle

actions under specialized circumstances. All reflex modules are divided into

26

two distinct elements: a perceptual component called a virtual sensor and an
action component called a reflexive behavior. He defines a virtual sensor as
a simple sensing and processing unit which provides assimilated sensor data.
Reflexive behaviors are highly procedural units due to the high demands for

immediacy. Examples of reflexes he implemented were :

Slow for obstacle.

Turn for obstacle.

e Maintain heading.

o Follow left edge.

The concept of Reflex control for obstacle avoidance for industrial robots
was introduced by Wyatt S. Newman in his Ph.D thesis [56]. Reflex control
for obstacle avoidance has since been further developed and implemented on
different robots by Dr. Wyatt Newman, Michael Stephen Branicky and the
author [55, 54, 9, 58, 11, 76, 77, 75, 78, 74, 57, 59]. This reflex controller
exhibits the following virtues: It does not suffer from unrealistic or overly
restrictive assumptions on robot dynamics; it fits into control hierarchies and
does not interfere with normal actions unless imminent danger is present;
its complexity does not increase with higher dimensions; it does not fail or
slow down as environment complexity increases; it does guarantee collision

avoidance (at least for static obstacles) and can be computed on line; and in

27

certain implementations it is fail-safe i.e. if the reflex controller quits or is too
slow this will still not result in a collision. When the reflex controller easily
can be incorporated with other control schemes with minimum non-essential
influence on higher-level controls, it serves as a natural building block in more

advanced obstacle avoidance and path planning schemes.

3.3 A Classification of Artificial Reflexes

Reflexes are typically simple, short in duration, and directly tied to some
proprioceptive or exteroceptive sensory input. In [64] artificial reflexes are
modeled as consisting of two components, a perceptual component called a
virtual sensor and an action component called a reflexive behavior. I will also
model artificial reflexes this way. The virtual sensor monitors the environment
and the robot state and detects certain easily defined conditions and generates
an input to the active component.

I will further classify artificial reflexes depending on whether they are im-
plemented in parallel or in series. Artficial reflexes which are implemented in
series with the control structure are referred to as reflexive filters. Artificial
reflexes which are implemented in parallel with the control structure will be
referred to as reflexive actions. A reflexive filter is implemented in series with

the control system, which means that all higher-level commands must pass

28

through the reflexive filter. A reflexive filter would typically be used to pro-
tect the system from higher level commands which would result in undesirable
results. A reflexive filter could also be used to provide a guaranteed low-level
behavior for other reasons. A reflexive action on the other hand has no effect
on the system until shortly after it has been activated. Another important
distinction is whether the reflex module depends on higher-level commands or

not. The different cases are listed below and illustrated in Figure 3.1.

Higher Level Commands

Command &

) pO—
External Virtua Active
" - C
W omponent
Sensors Sehsor Condition P
§ Optional —— \§ Filtered

Robot State (Internal Sensors) Output

Command Independent Higher Level Commands

Reflexive Action 1
. Detected . Output
External Virtual Active
» pm— Component —
Sensors Sensor Condition P

e
il

e

-— Optional —»
Robot State (Internal Sensors)

Command dependent

.) Higher Level Commands
Reflexive Action

\/

Detected -
External Virtual Active Output
Sensors » Sensor Con dit.i o Component r—

Y<——Optional —>t\

Robot State (Internal Sensors)

/ e

gl

Figure 3.1: A modular description of a reflex action, a command dependent
reflex action, and a reflexive command filter

29

1. The artificial reflex is implemented in parallel with the control architec-
ture, in other words the reflex controller generates commands into the
system when its virtual sensor detects certain conditions. Further the ac-
tive component does not depend on the current commands generated by
higher-level controls in the control structure. This type of reflex control
is typical in biological systems, and common also in robotics. This type
of reflex can be used for protection, withdrawal and attraction, postural
control, and as a component of fixed action patterns or complex behav-
iors. I will refer to this type of artificial reflex as a command independent

reflexive action.

2. The artificial reflex is implemented in parallel with the control architec-
ture, and the active component depends on the current commands from
higher-level controls in the control structure. This type of reflex control
generates commands into the control structure depending on the cur-
rents commands. The virtual sensor would typically restrict higher-level
commands when certain conditions are detected. A watchdog which de-
tects failures in higher-level modules and replaces commands coming from
these modules would be such a reflex. Another example is a reflex which
replaces all commands that would result in the robot getting closer to
a danger zone. [will refer to this type artificial reflex as a command

dependent reflexive action.

30

3. The artificial reflex is implemented in series with the control architecture,
in other words commands generated by higher-levels of control are contin-
uously monitored and approved or replaced by the reflex controller. This
type of artificial reflex acts like a command filter and is for that reason
called a reflexive command filter. The virtual sensor in the reflexive com-
mand filter detects certain conditions and derives from those restrictive
conditions which are put on the incoming commands. The reflexive com-
mand filter is used when it is essential that all higher-level commands are
monitored and approved. In other words, all commands must fulfill the
restrictions put on them by the environmental circumstances detected by
the virtual sensor. The reflexive command filter can be used for fail-safe
collision prevention, regulating force contact, protection against higher-
level software errors. In the case of fail-safe collision prevention the virtual
sensor would provide the active component with a subset of obstacle free
space which includes the current configuration. The active component
would approve or replace higher-level commands in such a way that it
always guarantees that the robot stays within this space. In Section 5
I will describe our reflexive command filter for obstacle avoidance. The
virtual sensor in this case is called the “C-space inspector”. In the case
of contact forces the virtual sensor would generate restrictions related to

the apparent passivity of the robot.

31

4. For a reflex to be implemented in series with the control structure it
must at least depend on higher-level commands. For this reason artificial

reflexes which do not depend on incoming commands cannot exists.

The distinction between reflex modules, and other behavioral modules, as
implemented in parallel and series, results in a general system architecture
given in Figure 3.2. In this hierarchical structure the behavioral command
filters form a “stem” through which all commands are passed and filtered.
The behavioral action modules are organized in layers. Within each layer the
different modules compete for control. These modules may depend on exter-
nal sensors, and higher level commands, as well as the robot state. These
potential dependencies are not indicated in Figure 3.2. The “virtual switch
controller” in Figure 3.2 is not necessarily a separate switch controller. In the
systems I implemented, the virtual switch controller is simply the result of
the interaction among the virtual sensors of the behavioral modules. In other
words the individual modules take control of the “virtual switch controller”,
depending on the state of the virtual sensors. However, it is conceivable that
the virtual switch controller represents a separate module, or a human opera-
tor. This structure will in the be referred to as the pine-tree structure in the
continuation.

I will also define the concepts of simple reflexes, triggered reflexes, contain-

ment reflexes, and repulsor reflexes.

32

Environment Environment

Module-3-A Higher Level Module-3-C
Virtual | [Active Commands Virtual | [Active Level-3
— Sensor Component Sensor Component | [<—|
Module-3-B X Module-3-D
s oo |
— Sensor Component| Sensor Component
Module-2-A Module-2-C
Virtual Active Active Level-2
" Sensor Component Sensor Component [+
Module-2-B X Module-2-D
e e
—(Switch
C d Control
Module-1-A -omman Module-1-C
Virtual Active Filter Virtual Active Level-1
— Sensor Component| Sensor Component| |[<+—
Module-1-B ‘XV Module-1-D
e e e I
Sensor Component Sensor Component

eflexive Command Filt 3;::::?1
for Obstacle Avoi ce Control
X robot-state Cspace éztr:lniand X robot-state
Inspector T™ =
Filter
Tryg éctory
—
Level-0
- i +

Servo
Controlle

X robot-state

Figure 3.2: An illustration of a generic behavioral structure. The behavioral
command filters form a “stem” through which all commands are passed and
filtered. The behavioral action modules are organized in layers. Within each
layer the different modules compete for control. The virtual switch controller
represents the interaction among the modules.

e Simple reflexes are defined as reflexes which are active in a specific region
of the state space called the activation region of the reflex. It should be
noted that the activation region might change due to external stimuli, or
a changing environment. However, the activation region is not dependent

on the current robot state, or internal task space commands.

33

o Triggered reflexes are reflexes which are activated if the robot enters a
certain region of the state space called the trigger region, and remains
active as long as the robot remains in a certain region of the state space
called the activation region. The activation region must be a superset of
the trigger region. In other words the activation region has hysteresis.
The difference between the activation region and trigger region is called
the hysteresis region. It should be noted that if the trigger region and
the activation region are identical the reflex is a simple reflex. This type

of reflex is illustrated in Figure 3.3.

o A containment reflex is a reflex for which all commands generated by
the reflex are confined to the same region in which the reflex is active.
A containment reflex can for example be a simple, or a triggered reflex.

Examples of a simple-containment reflexes are:

1. Reflexes which generate commands which bring the robot to a specific
point.

2. Reflexes which make the robot converge to a subset, rather than a
specific point.

3. A reflex which keeps the robot in the position within the activation
region where the robot entered the activation region (was first found

within the activation region). This particular type of reflex is called a

34

“hold reflex”. The point where the reflex “holds” the robot does not
have to be located on the boundary of the activation region. Exter-
nal stimuli can for example create a new activation region. Sampling
times and delays can also allow the robot to penetrate a fixed acti-

vation region.
4. Reflexes which confine the robot to the activation region, like the
static command filter (general case).
Figure 3.4 illustrates these four simple-containment reflexes.
e Repulsor reflexes push the robot outside the activation region. A repulsor
reflex can be a simple, or a triggered reflex.

Reflex activation region

Hysteresis Region

Figure 3.3: If the robot enters the grey area the reflex is activated. This is
called the trigger region. The reflex is not deactivated until the robot leaves
the white area. The white area is called the hysteresis region. The activation
region is the union of the hysteresis region and the trigger region.

These concepts will be further discussed and used in Chapter 10.

35

A. Goal 5

Figure 3.4: Four reflexes R4, Rp, Rc, and Rp are active in four different
regions. R4 generates a specific command, Rp keeps the robot within the
activation region, Rc makes the robot converge to a subset of the activation
region, and Rp holds the robot where it entered the activation region.

3.3.1 A Classification of the Reflexes Described in this

Thesis

In this section I will attempt to classify the reflexes and fixed action patterns
I implemented, according to the classification scheme described above. I will
also identify the virtual sensor and active component for each reflex, and give a

compact description of the basic operation and general purpose of each reflex.

o The reflexive command filter for obstacle avoidance. This reflex is de-
scribed in Section 5. The reflexive command filter is command depen-

dent, and implemented in series with the rest of the system, and is for

36

this reason of the reflexive command filter type. The virtual sensor in this
case is called the C-space inspector, and the active component is called
the active command filter. The C-space inspector provides the active
command filter with an obstacle free prism, while the active command
filter uses the free-space prism to determine whether a command is safe,

or not.

The purpose of this reflex is to protect the robot from collisions that would
occur if higher level commands were executed. It prevents collisions that
would occur if erroneous higher-level software or operator commands were

carried out, without otherwise interfering or effecting the system.

The startle reflex is a component of the flee reflex described in Section 8.
Two types of startle reflexes are described in this thesis. In the case of
the wall-emulating startle reflex, the moving obstacle is implemented as a
moving wall, while for the block-emulating startle reflex, moving obstacles
are modeled as occupying static blocks of work-space. This is a very quick
emergency reflex which generates an easily computed response in the
direction away from an approaching or potentially approaching obstacle.
The startle reflex is fired only once and the generated flee direction is
independent of the current command. This is an example of a reflexive

action.

The virtual sensor of the startle reflex monitors two conditions:

37

1. The existence of a virtual wall at the current position, or an approach-
ing virtual wall nearby the robot. In the case of the block-emulating
flee reflex the virtual sensor for the startle reflex detects blocks in the
world space which are occupied by an obstacle and sufficiently close

to the robot.

2. It checks whether another flee reflex, like the retraction reflex or the

hold reflex, are active. If that is the case the startle reflex is inhibited.

The active component of the startle reflex computes a flee direction using

the Jacobian, and delivers the resulting commands to the servo-controller.

The retraction reflex is another component of the flee reflex. This reflex
generates commands which make the robot flee in a desired flee direction,
away from approaching or potentially approaching obstacles. The flee
direction is independent of the current command, so this is yet another
example of a reflexive action. Again two types of retraction reflexes are
described in this thesis. In the case of the wall-emulating retraction reflex,
the moving obstacle is implemented as a moving wall, while for the block-
emulating retraction reflex moving obstacles are modeled as occupying

static blocks of work-space.

The virtual sensor detects the existence of a startle reflex, and the active

component generates a flee command computed from a flee potential and

38

the inverse Jacobian using configuration coordinates.

The hold reflex is a component of the block-emulating flee reflex. This
reflex keeps the robot at a safe distance from a moving or unanticipated
obstacle. The safety distance decreases by time if the obstacle remains
static. If a higher-level control module generates a command which would
bring the robot further away from the obstacle, this command is approved
by the hold reflex. This is an example of a command-dependent reflexive

action.

The virtual sensor of the hold reflex detects the existence of the retraction
reflex and monitors the distance to the obstacle in question. The hold
reflex becomes active when the retraction reflex has been initiated and the
distance from the obstacle is large enough. It is inhibited if the distance
from the obstacle is even larger. The active component either approves
higher-level commands or replaces them with commands that keep the

robot in its current position.

The halt reflex i1s one of the modules in the sonar-based world mapping
system described in Section 9. This reflex generates commands to the
servo-controller which halt the robot and keep it in its current position
for a certain amount of time. The purpose of this reflex is to halt or slow

the robot down when new obstacles are detected or when the robot is

39

performing large moves. The halt reflex is of the reflexive action type.

The virtual sensor detects new obstacles and large uninterrupted robot
motions. The active component holds the robot in the position where the
the robot was located when the halt reflex was initiated. The halt reflex
is inhibited to a certain degree when the work space is considered to be

well known by the sonar-based world mapping system.

The fixed action patterns used in the sonar-based world mapping system
are all reflex-like in the sense that they are simple, low level and they can
be classified and modeled the same way reflexes can. However, in this
case there is not a direct relationship between stimuli and response. The
time duration of fixed action patterns is in general much larger, and they
play an active part in the generation of the overall behavior of the robot.

They further generate a set of commands rather than a single response.

The fixed action patterns described in Section 9 are all similar to reflexive
actions in their general structure. The virtual sensor active component

pair can in each case be described as :

1. The virtual sensor for Look-Around checks if the robot has a task to
perform, or whether it is idle. The active component generates robot

motion for the purpose of finding unmapped obstacles.

40

. The virtual sensor for Look-Path checks if the robot has a task to
perform and is currently moving. The active component generates
the appropriate robot tool motions for looking for obstacles in the

robots path.

. The virtual sensor for Beam-At detects inconsistencies with the cur-
rent world map. The active component, in this case, generates com-
mands that will direct the sonar sensors in the direction of the found

inconsistency, for all “robot body” configurations.

. The virtual sensor for Approach detects inconsistencies with the cur-
rent world map. The active component moves the robot slowly to-

wards the location of the detected inconsistency.

. The virtual sensor for Investigate monitors the distance to the found
inconsistency, and how well the inconsistency has been investigated.
The active component generates a motion scheme which will place
the robot in multiple positions around the inconsistency. Investigate

is inhibited when the inconsistency has been well explored.

. Make-Map is a higher-level behavior which still can be modeled as
a virtual sensor and active component pair. The virtual sensor for
Make-Map monitors the confidence level thresholds of the investi-
gated space to determine if a map should be done or not. The active

component makes a map using retrieved sonar data.

41

This list demonstrates how reflexes can be classified, but it also indicates

how artificial reflexes should be constructed. When constructing a reflex you

should :

1. Identify the purpose of the reflex, and determine if a reflex module is the
appropriate choice for solving a particular problem. If the desired robot
behavior should be normally non-active or transparent, and active only
under certain conditions, and further if, the desired behavior is simple

and low level, a reflex module is appropriate.

2. Determine whether there are any higher-level commands which need to
be monitored by the reflex module. Determine whether the reflex module
should be implemented in series or in parallel. If there are higher-level
commands that must be continuously monitored and “approved”, the

reflex should be implemented in series, and otherwise in parallel.

3. Determine under which conditions the reflexive behavior should be active.

These conditions should be detected using a virtual sensor module.

The list above also demonstrates that some complex behaviors, particularly

fixed action patterns, can be modeled the same way reflexes are modeled.

42

3.4 Conclusions and Overview for Chapter 3

This chapter gave an overview of reflexes in biology and robotics. It was men-
tioned that reflexes are defined as simple responses which are short in duration
and directly tied to sensory input, and that fixed action patterns are defined
as extended stereotyped responses to sensory stimulus. It was also mentioned
that biological reflexes provide autonomous, multiresponsive systems, which
functionality to a large extent can be understood and simulated. It was men-
tioned that detailed descriptions of neuron connections and their functionality
has been given.

The traditional approach to artificial intelligence in robotics has emphasized
the abstract manipulation of symbols, whose grounding in physical reality has
not been achieved. This approach has failed to create “intelligent robots” or
“autonomous robots”. For this reason, behavioral approaches to intelligent
control have become more popular. A few of these behavioral approaches were
discussed in Section 3.2, a few of which utilized reflex-like control.

It was concluded that it was convenient to model artficial reflex modules
as consisting of two submodules, a virtual sensor and an active component.
Artificial reflexes are either implemented in series, in which case they are called
reflexive filters, or in parallel, in which case they are called reflex actions.
The same is true for other types of behavioral modules. This leads to the

architecture shown in figure 3.2. T also classified reflexes according to whether

43

they were dependent on higher-level commands or not. This chapter also
introduced the concept of simple containment reflexes, repulsor reflexes, and
simple triggered reflexes.

The motivation behind this chapter was to give an introduction to how
reflex-like control has been used in robotics reasearch, and to show that reflex

control is a research area with significant potential.

Chapter 4

Configuration Space Generation for the

Purpose of Reflex Control

The reflexive command filter to be described in Section 5 relies on a predefined
obstacle map which in our case is a configuration space map. The concept of
configuration space was first used in [47]. The configuration space of a robot
A is the space C of all configurations of A. For a manipulator arm, the
configuration space could be the joint space. Every obstacle 3; in the work
space', maps in C into a region C(f3;) = {Vq € |A(q) N B; # 0} Where A(q)
denotes the subset of the workspace occupied by A at configuration q. The
union of all C(Obstacles) is called the C(Obstacle) region, and its complement
is called the free-space. In configuration space each pose of the robot is a
single point. The dimension of the configuration space is the number of the
parameters representing a configuration. In the remainder of this thesis the
configuration space will be referred to as the C-space.

According to [34] there are seven standard methods available to compute

'With work space is meant the subset of the physical 3D space which is reachable by the
robot.

44

45

configuration obstacles:

e Point evaluation: The robot is placed in all possible configurations and
it 1s determined whether the robot is intersecting work space obstacles or
not. This method is simple and applicable to all types of robots. It is,

however, very time consuming.

e In the boundary equation method, one derives the constraints of the
configuration variables that bring the robot in contact with obstacles. The
contact constraints define the boundaries of the configuration obstacles.
This method is very hard to use in high dimensions and for complex

obstacle and robot shapes.

e Minkowski set difference: The Minkowski set difference of two sets A and
B are the set of points Mdiff(A4,B) = {a — bla € A,b € B}. For a
rigid object without rotation, the configuration obstacles are the union
of Minkowski set differences between areas occupied by obstacles and the
robot. In Figure 4.1, the reference point of the robot cannot be placed
in the shaded region, which is Mdiff(obstacle,robot). This method is

primarily used for polytopes.

e The needle method: All but one of the configuration parameters are fixed,
and the values of the variable parameter that bring the robot in contact

with all the obstacles are computed.

46

Robot

Obstacl e
Reference Point

Figure 4.1: The shaded region is the Minkowski set difference. The reference
point of the robot in this orientation cannot be placed in the this region.

o The sweep volume method computes the volume in the world space gen-
erated by a robot as the robot configuration is varied over a set in the
C-space. If the volume does not intersect any obstacle, the C-space set
is declared free space and otherwise further investigated. This method is
very efficient, but the sweep volume is hard to compute if the set has a

high dimension or the robot links have complex shapes.

e The template method computes the configuration obstacles due to fea-
tures of world obstacles. These features could for example be lines or
points, and the corresponding configuration obstacles are called tem-
plates. The world obstacles are represented as a union of features for
which templates are computed. The configuration obstacles are then
computed by “stamping” the corresponding templates into C-space. This

method was developed in [59].

e The Jacobian-based method : The Jacobian of a robot is used to relate

the displacement, 6z, of a point on the robot to the corresponding change

47

in the robot configuration. These displacements are used to relate a C-
space “chunk” to a work space “halo” around the robot. This “halo” is

used to check for obstacle intersections. This method was developed in

[62].

In the case of the reflexive command filter described in Section 5 the config-
uration space contains static obstacles, corresponding to joint limits, static
obstacles in the robot’s environment, and poses representing self-collision con-
figurations. These C-space obstacles usually do not require recomputation or
sensory input and can therefore be precomputed. However, sometimes obsta-
cles are brought in or out of the robot’s workspace, or mapped in using sensors
(for example ultra-sonic sensors). In these instances the C-space map must be
recomputed as fast as possible. For this purpose, I constructed a configuration-
space generator that takes workspace obstacle positions and their sizes as in-
puts, and rapidly adds them to the C-space map. The configuration-space
generator uses the template method described above to rapidly add obstacles
to the C-space map while operating the robot. The purpose of the reflexive
command filter is to protect the robot from erroneous higher-level commands
that would result in collisions under high speed operation. The reflexive com-
mand filter is not concerned with fine motion planning or exact obstacle maps.
For this reason it makes sense to ignore the degrees-of-freedom generated by

the end effector in the C-space map. I implemented the reflexive command

48

filter primarily on the Robotics Research K-2107THR robot. For the case of the
RRC robot this leads to a 4D C-space.

Currently, obstacles are defined either manually (by typing coordinates),
“taught” by using the robot to touch points on an obstacle, or found using
sonar-based world mapping. The sonar-based world mapping system repre-
sents new obstacles as sets of spheres. These spheres are added in to the
C-space while the robot is investigating the workspace. Spheres, planes and
lines are ideal primitives when using the template method.

Using the C-space generator, it is possible to generate C-space obstacles in a
matter of seconds (or even faster depending on resolution level). In our current
implementation, the finest resolution of configuration space is discretized into
64* “voxels” in 4-D, and these voxels are bit-mapped in RAM.

It should be noted that a database of templates must be precomputed off
line. Since this process need only be performed once for each robot type, the
computational efficiency of template generation is not crucial. Nonetheless,
this step does require a large number of computations, and some efficiency im-
provement is desirable. For this purpose, I have included a conservative test
for the possibility of collisions, based on geometric link and obstacle simplifica-
tions with sweep volumes. For poses in which a collision is easily proven to be
impossible, the detailed point-by-point collision test computations are skipped.

In this manner, we significantly speed up the template generation process, yet

49

preserve simplicity of the code for practical development and debugging.
In Section 4.1 the 4D C-space generator will be described in more detail.
Section 4.2 gives an overview of which methods were used to generate the

C-space templates and to generate static C-space.

4.1 The 4D C-space Generator

I constructed two versions of the 4D C-space generator, one for the first four
joints of the RRC robot and one for the four joints of an Adept-II robot. For
the RRC version I used points and spheres as features, and for the Adept-II
version I used points, spheres and planes as features.

When the basic idea behind the template method is to be able to pick a
precomputed C-space for a particular feature, this means that the template for
the feature must be either precomputed with respect to all feature parameters
or be possible to easily extract from other templates corresponding to the same
template.

A point is defined by three parameters, namely the point location (X, Y, 7)
with respect to the joint frame. The templates for points must therefore be
precomputed for all values of the parameters (X,Y, 7). A sphere is defined by
four parameters (X, Y, Z, R) where R is the radius of the sphere and (X, Y, 7)
the location of the sphere center with respect to the joint frame. A sphere thus

requires a larger database than a point. A plane is defined by three parameters,

50

namely the distance (X,Y,Z) to the plane along the plane normal. One can
also define the plane parameters as ()?,?,D) where ()?,)7) are two of the
components in the unit plane normal vector, and D is the distance to the
plane. Lines are defined by four parameters etc.

It should be noted that one must always get rid of at least one feature
dependency with the help of a simple translation. The shape of all templates
remains constant if the feature is rotated with respect to the z axis of any
revolute joint of a robot, or along any coordinate axis corresponding to a
prismatic joint. If a feature is rotated # degrees around the z axis of joint
J , the corresponding template will be purely translated § degrees in C-space.
This is evident from the definition of the DH-parameters. If the z axis of joint
J remains stationary, which is usually true for the first joint in all non-mobile
manipulators, this fact can be used to reduce the parameter dependency in
the template generation process. It should also be noted that if the first
three joints of a robot are prismatic, i.e. a cartesian robot, we can reduce
the parameter redundancy by three parameters. I will refer to this as feature
parameter dependency reduction. In general this means any C-space is purely
translated if the corresponding work space obstacles are rotated around the z
axis of the first rotary joint.

For the RRC version of the 4D C-space generator I used 2D-templates

and for the Adept-II version I used 1D-templates. When using 1D-templates,

51

one must first find the parameter values of a feature with respect to the first
joint coordinate frame, read the corresponding 1D-template, and place it in
C-space. Secondly, for all discretizations of the first joint, the parameter values
of a feature with respect to the second joint coordinate frame is found, the
corresponding 1D-template is read, and placed in C-space. The same is done
for the third and fourth joint. When 2D-templates are used, the parameter
values of a feature with respect to the first joint coordinate frame are found,
the corresponding 2D-template is read, and placed in C-space. Joint two and
three are treated in a similar fashion. When using 2D-templates we do not
have to do this procedure for joint four, which will save us computation time.
However, in the case of the RRC, link-3 which is the elbow, is very small
and can be considered a part of link-2 without great loss of accuracy, this
procedure is done for joint-1 and joint-3 only. Using 1D-templates saves us
memory when the 1D-templates usually are just one or two numbers, while
the 2D-templates are 2D-shapes. On the other hand, the 2D-template method
is considerably faster when the time consuming joint-4 loop is cut out. The
2D-template method requires circa ten times as much memory but is on the
other hand circa ten times faster. The choice between the two should be made
based on memory availability, speed requirements, accuracy requirements, and

the dimension of the C-space.

52

4.2 Configuration Space Calculations

Using templates is a very fast way to generate C-space. However, the templates
themselves must still be computed using “standard methods”. Further, when
using the template method all work space obstacles are approximated with a
set of features like spheres, points, planes and lines. In most cases relating
to collision avoidance and gross motion planning this is fine. However, in
some cases where the workspace or parts of the workspace is expected to
always remain the same, and high accuracy is desired, it might be desirable
to use a “standard method” for C-space generation. Even though the C-space
generation is less time critical in these cases, it should be noted that the C-
space generation can be so time and resource consuming that it becomes a big
problem, if not carried out with some efficiency.

When generating templates or static C-space for the RRC arm we cannot
use the Minkowski set differences, due to the complexity of the RRC geometry
and kinematics. The Jacobian-based method is not appropriate for this pur-
pose either when it only generates local approximations. Further, the sweep
volume method would in this case generate such complex volumes that the
coding process would be very difficult.

It 1s easy to generate code using the point evaluation method. I used the
point evaluation method to generate static C-space for the RRC. However, the

point evaluation method is very time consuming run-time wise. When using

93

the point evaluation method I modeled the RRC robot as a set of cylinders,
cones and spheres and checked algebraically for intersections at 128 discrete
points in C-space. I discretized C-space into 64* “voxels” which means that
each voxel contained 3* = 81 inspection points. If any of these inspection
points represented an intersection the voxel was considered taken. This is
illustrated in Figure 4.2. When the C-space seldom contains thin or tiny
objects, for real robots, even though the corresponding work space obstacles
do, T considered 128* to be a sufficient approximation. Further, the problem
resulting from the thin and tiny objects that appear in C-space are easily

eliminated by conservative work space obstacle and robot approximations.

tion Points

Figure 4.2: If one inspection point is taken this entire voxel will be considering
taken. If the inspection point also belongs to a neighboring voxel, that voxel
will also be considered taken

I also used the boundary equation method to generate templates for the
RRC robot. The problem with the boundary equation method is that it results
in very complex equations which in general are not analytically solvable. It
was very difficult and time consuming to derive the boundary equations, and

the run time for the resulting C-space generation programs were disappointing.

54

The reason for the disappointing run time in this case was that the numerical
methods | used to solve the resulting “highly unstable” and very complex
equations were inefficient. In fact the point evaluation method was a good
candidate as an alternative “numerical method” for solving these equations.
However, I was successful in using a boundary equation method for gen-
erating 2D-point-templates for the RRC robot. [will refer to this bound-
ary equation method as the “cut method”. In the cut method I express

the cones which forms the links of the RRC with the following equation :

y = \/(Ro — k2z)? — 22 — 22 for Z'P > z < Z%". This equation describes the
cone surface in the coordinate frame corresponding to the link the cone is a
part of. The cone surface is uniquely defined in this coordinate frame. In
the case described here the point is defined in the base frame and the cone
in the joint-2 coordinate system. I then form the equation :c_g = Agw_z, where

20 = (2p,Yp, 2) is the known point location with respect to the base frame

and 22 = (z, \/(Ro — kz)? — 22 — 22, z) for Z!P > 2z < 7% is the cone equa-
tion in frame two. AY is the transformation matrix from joint-2 to the base
frame. The cone surface equation is essentially translated from frame-2 to
the base frame and equated with the point for which we wish to compute the
corresponding C-space (template).

This equation contains four unknowns (z,z,6;,602) and three equations.

The reason for this is that point will intersect with the cone surface along

39

an elliptical path I will refer to as the cut. The cut is now found by keeping
one of x or z constant and solving for #; and 63. It must be predetermined
which one of x and z should be kept constant in different expected results
of #; and 6 for the sake of equation stability. I succeeded in solving this
equation analytically, and by varying one of z or z I found the #; and 6,
that corresponded to the point-cone surface intersections. Attempts to apply
this method to higher dimensions or planes and lines resulted in equations
which were not analytically solvable. Another implementation using boundary
equations is described in [33]. In this paper the robot links are assumed to
be sticks, and the world space obstacles polyhedral obstacles with surfaces
consisting of triangular patches.

Another approach to computing templates and static C-space which I found
more fruitful was what I will refer to as the “layered intersection predeter-
mination method”. In the layered intersection predetermination method the

possibility for obstacle-robot intersection is determined in three steps.

1. Sweep volumes, or the needle point method, in combination with simple
and conservative approximations of the robot links and obstacles, are
used to determine the possibility of robot link and obstacle intersection.
Smaller sweeps are used to narrow in on possible intersections. Figure

4.3 illustrates sweep volumes derived from approximations.

2. If an intersection is possible, use the point method in combination with

96

simple but conservative approximations of obstacles and robot links to
check whether an intersections is possible, and if so guaranteed. This is

illustrated in Figure 4.4.

3. If an intersection is possible but not guaranteed, perform a complete

intersection check.

A z3 z2
Z1
Z4 Tool approximated
asacylinder.
Z3 z2
Z1

‘ ‘ Limited sweep volume with
respect toj1 & j2, enclosed
by approximating disk.

Q Sweep volume of

entirerangeof j3& j4.
zZ3 zZ2

Z1

~— \ Sweep volume of

entirerangeof j1,2,j3, j4.

Figure 4.3: A. Demonstrates full range sweeps of a cylinder approximation of
the tool. B. Demonstrates an approximation of partial range sweeps.

In all three steps intersection determination procedures for different sets of

obstacles are used. Examples of such procedures are,

1. To check for the intersection of two spheres of radius F; and R;, determine

37

Inscribed objects

R
Object 1
Sphere 1 Sphere?2

d,> R+ R, —»> Inter section not possible

B. /\ Inscribed spheres

)

dpp <R+ R,—> Obviousintersection

Figure 4.4: A. The possibility of intersection between two objects is deter-
mined. B. Using inscribed spheres it is easy to show intersection.

if the distance d between the two spheres is less than R; + Rs.

2. Check for intersection between a cylinder and a sphere. First compute
the shortest distance (normal distance) between the sphere center and
the cylinder-center, and the corresponding normal intersection point on
the cylinder-center. This is a simple operation if the equation for the
cylinder-center line is known. If the distance is larger than the combined
radiuses of the cylinder and the sphere we cannot have an intersection.
We have an intersection, if the normal distance is less or equal to the
combined radiuses of the cylinder and the sphere, and the corresponding

normal intersection point is inside the cylinder, or the hypotenuse formed

98

by, the offset line from the cone-end and the normal intersection point,

and the normal minus the cylinder radius, is larger than the sphere radius.

. Check for intersection between a “cut-cone” (cone with its top cut-off)
and a sphere. First compute the shortest distance between the sphere
center and the cone-center, just like in the case above. This check is
in the continuation similar to the one above, except that, the equations
contain more complex trigonometry due to the varying radius of the cone,
and the fact that the cone-center normal will not be normal to the cone

surface.

. To check for the intersection of two convex polyhedra described as the
intersection of a number of planes, Alx + Bly + Clz+ D} (obstacle one),
A?.f + szy + Cj?z + D? (obstacle two), where the normals of the planes are
pointing inwards to the obstacle, do the following. Points inside or on, for
example, the obstacle are characterized by, Vi Alz + Bly+ C}lz+ D} > 0.
For intersection we have that either, all corners of one of the obstacles are
inside the other obstacle, or at least one edge of obstacle one intersects
one surface of obstacle two. It also true that if, one corner of obstacle
one is inside obstacle two, or one corner of obstacle two is inside obstacle

one we for sure have an intersection. If we suspect an intersection we first

99

compute the corners by solving,

Alz+ Bly+Cl'z+ D} = 0
Alz+ Bly+Clz2+ D7 = 0

Ay + By +Ciz+D; = 0

for all combinations of (¢, j, k) for both objects. However, this equation
might yield some "false” corners. These false corners could be removed by
making sure that A7z + Bl'y+C]z+ D} > 0 for all planes which forms the
convex polyhedra. Now, check if the any of the generated corner points
for obstacle two fulfill the Vi Alz + B}y + C!z + D} > 0 requirement,
and vice versa for obstacle one. If this is not true we check if any of
the edges intersect any of the surfaces of the other obstacle. First we
need to find the equation of the edges which can be done by for example
generating the equations for the lines between all points, and check if they
intersect two planes, if so the lines corresponds to edges. Secondly, check
if any of these edges intersect any of the planes for the other obstacle, at
points which are inside the polygon formed by the corresponding corner
points. It should be noted that before this computation is done, simpler
checks should have been done like, checking the intersection between the
enclosing spheres (cylinders). If the obstacles are not convex the obstacles

must be subdivided into convex parts for this algorithm to work.

60

5. To check for the intersection of two arbitrary polyhedra described as
a set of corner points and edge-line equations, do the following. For
intersection we have that either, all corners of one of the obstacles are
inside the other obstacle, or at least one edge of obstacle one intersects
one surface of obstacle two. It also true that if, one corner of obstacle
one is inside obstacle two, or one corner of obstacle two is inside obstacle
one we for sure have an intersection. Find the surface equations by using
three adjacent corner points to solve for A, B, and (' in the following

equation system.

Az + By +Czr+D = 0
Azy+ By, +Cz+D = 0

AA$3+B?J3‘|‘023—|—D =0

where D is picked arbitrarily. This equation can now be normalized, and
the direction of the normal can be chosen so that an arbitrary point inside
the obstacle, or if the obstacle is convex, another corner point, would give
a positive result if inserted in the plane equation. We first need to check
if any obstacles cornerpoint is inside any of the other obstacles convex
subdivisions. If this is not true we check if any of the given edge equations
intersect any of the planes corresponding to the other obstacle at a point

which is inside the polygon formed by the corresponding corner points.

61

The types of objects I used to approximate robot links and work space
obstacles with were spheres and cylinders. The primitives I used to describe
my actual obstacles and robot links with were, cylinders, cones, spheres, and
convex polyhedra. This method was primarily used to generate the static C-
space for the Adept-II robot, but also to a limited extent used to generate the

static C-space for the RRC robot.

4.3 Conclusions and Overview for Chapter 4

The configuration space of a robot A is the space C of all configurations of A.
There are seven standard methods for generating configuration space maps,
point evaluation, the boundary equation method, Minkowski set differences,
the needle method, the sweep volume method, the Jacobian based method,
and the template method. The template method is particularly useful for
quick configuration space generation.

This chapter described a configuration space generator, which generated
configuration space obstacles very quickly utilizing the template method. Us-
ing the C-space generator, it is possible to generate C-space obstacles in a
matter of seconds (or even faster depending on resolution level).

Using templates is a very fast way to generate C-space. However, the tem-
plates themselves must still be computed using “standard methods”. Further,

when using the template method all work space obstacles are approximated

62

with a set of features like spheres, points, planes and lines. In most cases re-
lating to collision avoidance and gross motion planning this is fine. However,
in some cases where the workspace or parts of the workspace is expected to
always remain the same, and high accuracy is desired, it might be desirable use
an exact computation method for C-space generation. The layered intersec-
tion predetermination method was an exact computation method introduced
in this chapter.

The reflexive command filter to be described in Section 5 relies on a prede-
fined obstacle map which in our case is a configuration space map. The use of
configuration space in the context of reflex control, or for any other purpose,

have a number of advantages and disadvantages. The advantages are:

1. The robot is represented as a point in configuration space. It easy to

create algorithms for navigation or obstacle avoidance of a point.

2. Dynamic relationships are often easy to express in terms of the configura-
tion space, particularly if the configuration space is the robot joint space.

This is particularly useful in the context of reflexive obstacle avoidance.

3. In configuration space each pose of the robot maps into a single point. The
configuration space does not contain any singularities, multiple solutions,

or redundancies.

The disadvantages are:

63

1. The dimension of the configuration space is the number of the param-
eters representing a configuration. This means that highly redundant
robots result in very high-dimensional configuration spaces. This makes
discretized, or even descriptive configuration space maps of highly redun-

dant robots very hard to store in RAM.

2. For complex robot systems it is very hard to compute configuration space
obstacles, which makes the configuration space approach very time con-

suming. The template method partially solves this problem.

For system of high dimensionality it may not be feasible to pre-compute a
full configuration space map. In this case the configurations space must be
computed locally. However, it should be noted that on-line obstacle inter-
section detection in work-space and local configuration space map generation
are very similar processes. An algorithm which locally computes all possi-
ble collisons is in a sense computing local configuration space obstacles. In
this context the template method for generating configuration space obstacles

could be very useful.

Chapter 5

Reflexive Collision Avoidance for System

Preservation and Reliability

A promising approach to on-line automatic obstacle avoidance is the use of ar-
tificial potential functions. Potential functions are usually constructed about
obstacles in task space, and gradients of these functions define virtual repulsive
forces on a system to achieve collision avoidance. In most cases [2, 36, 41, 38],
either these approaches do not consider actuator effort saturation, and “guar-
antee” collision avoidance only through the assumption of unlimited force and
torque availability, or they invoke extremely conservative approximations. Fur-
ther, these methods often focus on collision avoidance with respect to the end-
effector only, not the entire arm. To include protection of points on the arm
as well, and to consider complex workspace, the computational requirements
of these methods can become prohibitive, leading to either very slow motion
or loss of collision protection.

Reflex control for obstacle avoidance is similar to potential functions in

theory. However, the reflex controller exhibits the following virtues: It does

64

65

not suffer from unrealistic or overly restrictive assumptions on robot dynamics;
its complexity does not increase with higher dimensions; it does not fail or
slow down as environment complexity increases; it does guarantee collision
avoidance (at least for static obstacles) and can be computed on line; it does
not suffer from excessive influence of obstacle repulsion fields; its complexity
increases only linearly with higher dimensions; it is ideally transparent, i.e.,
it does not introduce any significant distortion of higher-level controls in all
but emergency cases; it fits in control hierarchies, and it can be used for
both system preservation and as a building block in efficient path planning
algorithms.

Reflex control for obstacle avoidance was introduced in [56], and further
developed and applied in different applications in [55, 9, 58, 76, 77]. The
reflex controller approves or disapproves higher-level commands, based on a
rapid evaluation of a neighborhood of the robot’s environment. This way, the
reflex controller acts like a command filter that ideally is transparent, i.e.,
does not introduce any significant distortion of higher-level controls in all but
emergency instances. For this reason our reflex controller will be referred to
as the reflexive command filter in the remainder of this thesis. This quality
makes the reflexive command filter amenable to control hierarchies and makes
it possible to use it for both system preservation and as a building block in

efficient path planning algorithms.

66

This chapter describes a generalized, multifunctional and flexible method
to implement the reflexive command filter. Other types of implementations
are described in [55, 9, 58, 76, 77]. The reflexive command filter described
here can theoretically be inserted at any level in a control hierarchy and gen-
erate safe commands to underlying levels. The commands generated to the
underlying levels are filtered with respect to collision avoidance, using a map
of the immediate configuration space and sufficient knowledge about underly-
ing levels (including the dynamics of the robot). An overview of the reflexive

command filter is given in Figure 5.1.

‘Er X
C-space fq
inspector
Active

free-space X

Prism request -
S Command
. Filter

A

A

E cmd

Robot or X
lower level

Figure 5.1: The reflexive command filter.

Our reflexive command filter consists of two sub-modules which operate
asynchronously. One module is the C-space inspector and the other is the
active command filter. The C-space inspector corresponds to the virtual sensor
of the reflexive command filter and the active command filter is the active

component of the reflexive command filter (For a review of “configuration

67

space” or “C-space”, see [11, 59, 46, 45]). The C-space inspector is given a
request for a prism in C-space', which it inspects and approves if the request
is obstacle-free. If the prism is not obstacle-free, the C-space inspector will
return an obstacle-free subset of the request. The obstacle-free subset of the
request returned by the C-space inspector becomes the approved free-space
prism. The requested prism can be generated externally by a higher-level
or internally by the reflexive command filter. Section 5.3 describes how to
generate an appropriate prism request.

The active command filter receives a generalized request &,., which can be
a position, velocity, acceleration, or torque request from a higher-level, and
the active command filter issues a corresponding generalized command &4
directly to the robot or to other underlying levels. The command issued,
&.n4, must be safe with respect to collision avoidance, where “safe” will be
defined formally in Section 5.2. For all requests which would not result in
the robot’s leaving the approved free-space prism, the active command filter
controller approves the request as an identical command. If, however, the
request would cause the robot to commit to a dangerous or fatal future, the
reflexve command filter instead issues an alternative command based on a
predefined braking policy.

Since the reflexive command filter can easily be incorporated with other

LAll prisms referred to here are aligned with the C-space axes and have dimension N,
the dimension of the C-space.

68

control schemes with minimum non-essential influence on higher-level controls,
it serves as a natural building block in more advanced obstacle avoidance and
path planning schemes. In Section 7 we describe a geometric on-line 4-D path

planning algorithm that uses the reflexive command filter as a building block.

5.1 The Braking Policy and Braking Prism

A crucial construct of our reflexive collision avoidance scheme is the concept
of the braking prism. The braking prism is an N-dimensional prism in C-
space, aligned with the C-space axes, which is known to contain a robot’s
trajectory resulting from enforcement of a braking policy. A braking policy 1s
a prescription for generating commands to the robot (or underlying levels) as
a function of robot state, x, that brings all axes of the robot to a halt. It is
not necessary that the policy prescribe immediate deceleration of any of the
axes. Rather, it is only required that the trajectory resulting from application
of the braking policy is predictable, and that this trajectory (if carried to
completion) would terminate in the robot at rest. If the braking trajectory
under a given braking policy is predictable, then we can define a corresponding
braking prism in C-space which contains the braking trajectory.

It will be useful to define a compact notation to describe prisms in N-space.
In N-space, there will be 2V vertices of any rectangular (hyper-) prism. We

will consider rectangular prisms which are aligned with a reference coordinate

69

frame, i.e., with prism edges parallel to coordinate frame axes. Among such
prisms, we can define a “most negative” (least positive) vertex and a “most
positive” (least negative) vertex. More formally, if v;j is the 7th coordinate of
the jth vertex, we may define the scalar quantity d; = SN, vf The vertex
corresponding to the minimum value of d; is labeled “v™"”(the most negative
vertex), and the vertex corresponding to maximum d; is labeled “¥***” (the
most positive vertex). These vertices are uniquely determined®. Note that
these two opposite vertices V™ and v completely specify the geometry of
any aligned, rectangular prism in N-space. We will invoke these definitions
for all C-space prisms considered in this presentation.

In particular, we may consider braking prisms, which contain braking tra-
jectories. Application of a braking policy beginning at time ¢ results in a
trajectory from an initial state specified by q(¢),q(t) (joint-space pose and
joint velocities) to a final rest state q = 0 at pose qs. Any such braking tra-
jectory can be bounded by an aligned, rectangular prism in N-dimensional
joint space. Among all such bounding prisms, there is a unique prism of min-
imum volume. We shall define this min-volume prism to be the braking prism
with respect to the specified braking policy and initial state, as illustrated in
Figure 5.2.

The braking prism can be described in terms of its opposite vertices, Bn

2Prisms aligned with the reference coordinate frame.

70

8 Approved free-space prism—~ p
\ b5a.a)

Trajectory q

resulting from f

braking policy

Current-pos Braking

b (q,9) Prism

I pmin
0

Figure 5.2: Trajectory resulting from a braking policy defines a braking prism.

and B"*. Since the braking prism is uniquely defined by a braking policy and
by initial conditions (the state of the robot at time t), we can express the
bounding vertices of the braking prism as a function of state: BM(q(t), ¢(¢))
and B*(q(t), ¢(t)), or more compactly B""(q, ¢) and B***(q, ¢), or B""(¢) and
B ().

It is important to recognize that B™™ and B"®* are defined as a function
of state, regardless of whether or not the associated braking policy is applied.
These vertices constitute a compact description of the predicted behavior of the
robot under the presumption of initiated braking. If the respective braking
policy is invoked (and continued) beginning at time #,, then all B"™(¢) and
B"2%(¢) will remain confined within the prism defined by B"(¢,), B**(¢,) for
all time ¢ > ¢,. More strongly, B*"(¢) and B"**(¢) will converge monotonically
on the final pose, qs. Alternatively, if the braking policy is not imposed at

time ¢,, then the corresponding braking-prism vertices B"(¢) and B**(¢) will

71

have trajectories which may well leave the prism defined by B"(¢,), B*(¢,).
Ordinarily, the braking-prism vertices B""(q, ¢) and B"**(q, ¢) will be con-
tinuous functions of state. For ease of presentation, we will restrict our consid-
eration to those braking policies for which b(q, ¢) are differentiable in q and
q. In the cases where b(q, q) is not differentiable it might still be possible to
find an estimation of Ab(%).
Under the condition of differentiable b(q, q), (where b represents a braking

prism vertex) we can predict the trajectory of b(t) by differentiation:
db/dt = (0b/dq)dq/dt + (0b)/0q)d¢q/dt

In the above, the term dq/dt depends on the dynamic equations of the robot
and on the control command to be exerted. Thus, we can evaluate Brin and
Bnax, the evolution of the braking prism, as a function of state and a generalized
request, &eq-

In implementation, we will perform evaluations at discrete time intervals of
At, resulting in predicted increments of b, Ab, rather than continuous time
derivatives. In these cases, we will presume a discretized equivalent restriction
on differentiability. Specifically, it will be assumed that the trajectory of a
braking-prism vertex b moving from b(¢) to b(¢ + At) = b(t) + Ab is entirely
contained within the prism defined by b(¢) to b(¢) + Ab, regardless of the
command imposed.

With the definitions above, we have an efficient means by which to test

72

impending danger of collision. Should it be necessary to stop the robot from
colliding with a known obstacle, we can rapidly detect whether the collision
can be prevented by applying some specified braking policy. Further, we have
a means of predicting the onset of danger, by invoking computations of the
time derivative of the braking-prism vertices. We can use these properties in
the construction of a general reflexive collision-avoidance scheme, which we

describe in the following section.

5.2 The Active Command Filter

The active command filter continuously makes rapid decisions whether to ap-
prove a request as an identical command, or to issue instead a command
derived from a braking policy. To make its decision, the active command filter
continuously evaluates the braking prism corresponding to a default braking
policy and to the specified request as a function of robot state. Multiple al-
ternative braking prisms corresponding to alternative braking policies may be
considered. As long as at least one braking prism would not exit the approved
free-space during time At (using the input request), that request is passed
through as an approved command. If, however, the request would cause all
braking prisms to exit the approved free-space volume, the request is denied,
and a valid braking policy is immediately invoked instead. It should be noted

that, by invoking a valid braking policy, we guarantee that the robot will stay

73

within the approved free-space prism and that this braking policy will remain
valid. Examples demonstrating how to define braking policies and compute
the corresponding braking prisms are given in Section 5.4.

We will define a state of the robot as projected safe with respect to an input
request, a specific braking policy, and a specified free-space prism as follows. If
the braking prism can be expected to remain within the free-space prism in the
immediate future (i.e., one time step At) assuming execution of the request as
a command, then that state is projected safe. This is the condition which the
active command filter must continuously evaluate to approve or deny input
requests. A more detailed algorithm describing this process is given below.

A braking prism defined by points B""(q, q) and B"**(q, q) is illustrated
in Figure 5.2. Further, the approved free-space volume is defined by opposite
prism vertices g"™ and g"**. Projected safe can be defined as follows:

The braking policy is projected safe if for each joint coordinate z the corre-

sponding braking prism fulfills the following requirement.

B, q) + ABT > g
and
6?ax(q7 q‘) + Abl;ax < ﬁ;ax

Where g"™ and g% are defined for the free-space prism as BY™ and Brax

are defined for the braking prism. AB"™ and AB"* are the expected changes

74

of BM™ and B"** during the next cycle of the active command filter, assuming
the request were to be approved. If At is small and the braking policies
closely corresponds to maximum braking, the reflexive command filter will be
transparent in the sense that higher-level commands will be replaced only if
necessary.

Heuristically, this mathematical definition means that the braking policy is
projected safe if the corresponding braking prism is contained in the approved
free-space prism and its boundaries are either moving away from the bound-
aries of the approved free-space prism, or the expansion of the braking prism
is small enough not to exceed the boundaries of the approved free-space prism
during the next cycle.

The operation of the active command filter can be summarized as follows :

o The active command filter computes a set of braking prisms corresponding

to a set of braking policies and determines whether any are projected safe.

o If at least one of the braking policies is projected safe, the current com-
mand request is approved verbatim as a command. If none of the braking
policies are projected safe with respect to the current command request,
the request is denied. In that case, a command is generated correspond-
ing to a braking policy for which the braking prism is currently contained

within the free-space prism.

75

o When the C-space inspector generates a new free-space prism, the active
command filter attempts to restrict the braking prism or prisms to the
intersection of the new free-space prism and the previously approved free-
space prism. The new free-space prism will not be approved until this
is achieved. The motivation behind this action is to guarantee that the
braking policy at all times is projected safe, even at the instances when

the approved free-space prism is updated. This is illustrated in Figure

5.3.
New free-space prism New approved
free-space prism
| Br ak{ng prism
\ &
N\
f oy
Previously'approved

free-space prism

I nter section of new free-space prism
and previously approved free-space prism

Figure 5.3: The new free-space prism is not approved until the braking prism
is contained within the intersection of the new free-space prism and the previ-
ously approved free-space prism. The approved free-space prism is displayed
in gray.

The active command filter guarantees that the braking prism is always
contained in the approved free-space prism, even when the free-space prisms
are updated. By definition the robot will always be contained in the current
braking prism. Since approved free-space prisms are obstacle-free, the reflexive

command filter thus guarantees collision avoidance.

76

The execution time of the active command filter increases linearly with the
dimension of the C-space. In our 4-D implementation, the active command

filter runs at a constant cycle rate of 1900Hz.

5.3 The C-space Inspector

Our second important module is the C-space inspector, which evaluates whether
a proposed prism in C-space is obstacle-free. The basic function of the C-space
inspector is illustrated in Figure 5.4. The C-space inspector is given a request
for a prism. In this case, the requested prism contains obstacles and will not
be the returned free-space prism. Instead, a subset of the requested prism
that is free from obstacles is returned. The free-space prism is generated by
inspecting the difference between the last-approved prism and the new request.
In other words only uninspected C-space is inspected.

There is more than one way to choose an obstacle-free subset of the re-
quested prism if the requested prism contains obstacles. It is desirable to
choose an obstacle-free subset that minimizes the influence of the obstacle. To
achieve this, the free-space prism is chosen to accommodate future motion of
the braking prism.

In our case, the uninspected C-space is incrementally inspected by inspect-
ing segments of C-space, called search-fronts. The search begins at the borders

of the last approved free-space prism, and is expanded into the new requested

7

Requested Prism~~,
Qbstacl

—/\»-
Braking

Free-space pr|§m
prifrn .

\
kt approved C—spacle to

fr ee-space prism be inspected.

Figure 5.4: A new free-space prism in a cluttered environment. When the
braking prism is contained within the new free-space prism it becomes the new
approved free-space prism. The C-space that had to be inspected is displayed
in dark gray.
prism in a wave-like manner, as illustrated in Figure 5.5. When an obstacle
is encountered at a search-front, the expansion is halted in that direction. In
Figure 5.5, the search-front expanding in the §; direction encounters an obsta-
cle, and further expansion in the #; direction is halted. To account for future
expansions of the braking prism we assign different speeds to the search fronts.
The speeds of the search fronts depend on the expected future motion of the
braking prism. In Figure 5.6 the braking prism is moving rapidly in the 6,
direction, which results in a higher speed of the search front expanding in the
6 direction. Consequently, the obstacle in Figure 5.6 causes an expansion halt
in the 8, direction.

The resulting free-space prism is displayed in gray in Figure 5.6. For the

reasons explained in Section 5.2, the new free-space prism will not be approved

until the braking prism is contained within the new free-space prism. In Figure

78

Requested prism—a

Sear ch-front-5
Sear ch-front-4
Sear ch-front-3
2 Sear ch-front-2
—~, Search-front-1

ull

L ast approved \
free-space prism\~ o

Figure 5.5: Search-fronts originating from last approved free-space prism.

Requested prism—"

Obstacl e__,-
6,

Last appfoved —_—"
free-spadge prism

:Braking prism/

New free-spaceg prian/e‘l

Figure 5.6: The dynamics of the robot defines speed of search-fronts.

5.6 the braking prism is still not contained in the new free-space prism, and
for that reason the new free-space prism is still not approved.

The C-space inspector is fail-safe in the sense that if it would halt unex-
pectedly, the last free-space prism would still remain a valid, safe constraint.
The active command filter, on the other hand, is, in general, not fail-safe. The
execution time of the C-space inspector grows geometrically with the dimen-
sionality of the C-space. The execution time of the C-space inspector further

depends on the size of the region to be inspected. Thus, efficiency is improved

79

when only local regions of C-space are inspected.

If the reflexive command filter does not receive prism requests from higher
levels, the reflexive command filter generates its own prism requests (based
on the generalized requests it receives from higher-levels). This can be done
by C-space inspector or a second separate module. It is not crucial for ob-
stacle avoidance how this is done. However, to minimize the influence of the
reflexive command filter, these prism requests should conservatively contain
the current braking prism, but still be small enough not to cause excessive
C-space inspection time.

We have found acceptably fast performance in our 4-D implementation.
We discretized C-space into 64* “voxels.” In our 4-D implementation, we have
a worst-case execution time of 10ms for an inspection of a prism consisting
of 5% or 625 voxels. At this size and update rate, our implementation of the
reflexive command filter did not noticeably affect the behavior of the robot in
free space. An illustration of how the free-space prism evolves while the robot

is moving among obstacles is given in Figure 5.7.

5.4 Examples of Braking Policies

We have implemented and experimentally verified a few braking policies. The
braking policies we have used are all based on some type of non-overshooting

servo-control. In these cases, the braking prism is particularly easy to compute.

30

A. Goats B. Goar$
Current
pogition
2 Current

b L position

C. D. Goal™

iGoal

¢ r----«
Current“fm' Cur_r_ent .
position

position

Figure 5.7: Free-space prism evolves in C-space while the robot is moving.
One of its vertices is located at the current position and the opposite vertex at
the point where the robot is expected to come a complete stop when applying
the braking policy. Below we describe three different braking policies operating

in three different settings. The settings are shown in Figure 5.8.

Higher level Higher level ';'c:gtf:irléivrd
controls controls
servo controller
B Bralo O [T
Reflexive Reflexive
command filter command filter command filter
lecmd (A%md-l i Temd
Servo controller b
or trajectory Servo controller Robot
generator or Robot
h-cmd
Casel. Casell. Caselll.

Figure 5.8: Three different settings for the reflexive command filter.

e Case 1 : The commands received by the reflexive command filter are
position commands and the commands generated by the reflexive com-
mand filter to an underlying non-overshooting servo-controller, or trajec-

tory generator, are position commands. In this case the braking policy

31

is particularly simple. All position requests located inside the approved
free-space prism are approved, all others are replaced by the position cor-
responding to the intersection between the border of the free-space prism
and the line-segment from the current position to the requested position.
This is illustrated in Figure 5.9. All position commands generated to
the underlying levels are inside the approved free-space prism, and the
non-overshooting servo-controller or trajectory controller guarantees that
the robot does not overshoot these positions. For this reason the reflexive
command filter guarantees obstacle avoidance. It should be noted that if
any of the reflex control modules would fail, the last approved command
would still remain valid, and we are still guaranteed obstacle avoidance.
For this reason the reflexive command filter in this setting is said to be
fail-safe. This approach to reflexive obstacle avoidance has been tested
on three different manipulators, a high-speed 2-link planar arm [56, 54], a
General Electric GP-132 industrial robot [58, 11, 9], and on the Robotics

Research Corporation K-2107THR robot arm [76, 77].

Case 2 : The commands received by the reflexive command filter are ve-
locity or position commands, and the reflexive command filter generates
approved velocity commands to a servo-controller or to a robot emulating

velocity control at the analog level. In this case the braking policy we are

82

using is wmd, = sgN(d;)1/2|d;|max,, Where amnay, is the maximum acceler-
ation for joint ¢ (which is chosen to achieve close to maximum braking
without overshoot), |d;| is the joint distance to where we want to come
to a complete stop, and wmq, is the velocity command. If this braking
policy is used, |d;| would correspond to the distance to one of the vertices
of the approved free-space prism. The braking prism in this case will
have one vertex at the current position and the opposite vertex at the
braking point dy, = w?/(20may;). If the braking policy is projected safe,
the velocity request is approved, and if the request is a position request,
maximum velocity is commanded. If the braking policy is not projected
safe, the request is replaced by wma, = sgn(d;)/2|d;|Gnax,- The braking
policies described here and in the next case are derived from the reactive

trajectory generator described in [77].

Case 3 : The commands received by the reflexive command filter are
torque commands and the commands generated by the reflexive command
filter directly to the robot are torque commands. Our braking policy in

this case is 7, = K, (@es; — i) + Ky, (Wes; — wi) + Ko, lles,, Where

Wes;, = — Sgl’l(di)%axi

Wes; = sgN(d;)\/2|d;|amax,

Qlesi — 92 + szt - Sgn(di>c¥naxiAt2/2

33

Where gpay, 1s the maximum acceleration, w; the velocity, d; the distance
to where we want to come to stop, and At is the loop time (time elapsing
between command updates) of the active command filter. guax,, K, and
K,, are adjusted to achieve close to maximum braking without overshoot.
The braking prism in this case will have one vertex at the current position
and the opposite vertex at the braking point. If the braking policy is
projected safe, all torque commands are approved. Otherwise the torque
commands are issued as per the above braking policy. Another approach
emulating direct torque control is described in [54]; experiments using

this approach are described in [9, 59].

Approved free-spaceprism Approved free-space prism

Requested Approved
and approved Position
Position

Position Position

Figure 5.9: All position requests located inside the approved free-space prism
are approved, all others are replaced.

It should be noted that it is not always possible to construct a non-overshooting
braking policy without considerably affecting the speed and acceleration capa-
bilities of the robot. This is, for example, the case when there is strong dynamic
coupling among the links of the robot. In such cases, our braking policies may

be overly conservative to guarantee no overshoot. Instead, braking policies

34

that allow overshoot should then be constructed. It is always possible to con-
struct a braking policy provided the resulting braking trajectory is predictable
enough that it can be bounded by a prism. The non-overshooting braking poli-
cies we have implemented are emulations of non-overshooting servo-controllers.

By a non-overshooting servo-controller we mean a servo-controller, which
for all position commands, generates paths which monotonically converge to-
wards the desired joint positions, if given from a zero initial velocity. Examples
of such non-overshooting servo-controllers are soft (over- or critically-damped)
PD-controllers, bang-bang, and sliding-mode-controllers. We have also devel-
oped and implemented what we call a reactive trapezoidal trajectory generator.
The reactive trapezoidal trajectory generator generates (in a reactive manner)
non-overshooting, nearly time-optimal trapezoidal velocity profiles to an un-
derlying servo-controller. The reactive trapezoidal trajectory generator will be

further described in 6.

5.5 Using the Reflexive Command Filter for

Fault Tolerance and Autonomy

Fault tolerance and system reliability with respect to hardware, mechanical
and sensor failures have been addressed by numerous scientists. An extensive

overview of these issues, and failure rates for different components are given in

35

[27]. In [50, 49] the degradation of dexterity due to a joint failure in kinemati-
cally redundant manipulators is analyzed, and a failure tolerance measurement
with respect to local dexterity is defined and used to find optimal fault toler-
ant configurations. In [44] a failure tolerance measurement is used to optimize
the dynamic performance of redundant robots in the presence of joint failures.
An expert system for fault detection and fault tolerance is described in [48].
This expert system is able to detect faults and use recovery data to reveal
functional replacements for faulty components and indicate possible causes or
effects of the failures. In [80] Wu, Hwang and Chladek presents an analysis of a
dual-motor fault tolerant joint design for the space shuttle remote manipulator
system.

The primary objective of the reflexive command filter is to guarantee system
survivability. The incorporation of the reflexive command filter as a means
to protect the system from higher-level software errors that would otherwise
result in collisions with obstacles adds another dimension to the research area
of fault tolerance and system reliability.

The reflexive command filter accepts commands from higher, more intelli-
gent layers, monitors the state of the system, inspects the local configuration
space, and anticipates potential damage to the system. The reflexive command
filter continuously and rapidly projects whether it is necessary to prevent a

collision. On each reflex cycle, if it can be proven that a protective reaction

36

may be safely deferred, then the higher-level motion command is accepted and
executed verbatim. If, however, the reflexive command filter cannot prove that
protective action may be postponed, then it substitutes a protective action in
place of the higher-level command. The protective action generated by the re-
flexive command filter is as close to the commanded action as possible, subject
to the constraint that no damage may occur.

The reflexive command filter has been shown to be efficient, permitting
full-speed robot operation while ensuring collision prevention. The reflexive
command filter has been tested with higher layers of both teleoperation and
on-line motion planning. In the case of teleoperation, the reflexive command
filter permitted the robot to respond to operator commands up to the full
bandwidth of the actuators, while simultaneously protecting the robot from
even deliberately malicious motion commands. In the case of on-line planning,
the reflexive command filter actually improved the performance of the planner,
as the planner did not need to concern itself with high resolution or with
possible danger from dynamic tracking errors.

It should be noted that the reflexive command filter not only prevents
obstacle collisions but, as is illustrated in Figure 5.7, also is capable of some
navigation. However, the reflexive command filter is in general less competent

than, for example, deliberately chosen potential functions in finding simple

87

paths around obstacles. This can be explained in terms of energy. If a joint-
space goal point, g.a1, is represented as an attractive potential function, then
we can evaluate the energy associated with any pose of the robot, ¢, as £ =
Zf\il FE; where E; = %[(i(@esi —¢)? K; > 0. In Section 5.3 it was mentioned
that if an obstacle is found on a search front the expansion of the search front
in the corresponding direction is halted. For our reflexive command filter,
this means that joints are controlled in a manner which enforces d(E;)/dt <0
for each joint 2. Alternatively, a typical potential-function controller would
execute a path corresponding to the steepest descent of the total energy, E. At
an obstacle boundary, moving into an obstacle is equivalent to a steep positive
energy gradient. As a result, the steepest descent of K near an obstacle might
well require an increase in one or more individual joint energies, F;. Thus,
potential-function controllers can often continue to make progress towards a
goal (dE/dt < 0) in cases where the reflexive command filter alone would stall
(d(E;)/dt > 0 for some j). In Section 7.2 we describe how to to augment the
planning behavior of the reflexive command filter, using “guiding potential

functions.”

5.6 Conclusions and Overview for Chapter 5

The reflexive command filter accepts commands from higher, more intelligent

layers, monitors the state of the system, inspects the local configuration space,

38

and anticipates potential damage to the system. The reflexive command filter
continuously and rapidly projects whether it is necessary to prevent a colli-
sion. On each reflex cycle, if it can be proven that a protective reaction may
be safely deferred, then the higher-level motion command is accepted and ex-
ecuted verbatim. If, however, the reflexive command filter cannot prove that
protective action may be postponed, then it substitutes a protective action in
place of the higher-level command.

The reflexive command filter exhibits the following virtues: It does not
suffer from unrealistic or overly restrictive assumptions on robot dynamics;
its complexity does not increase with higher dimensions; it does not fail or
slow down as environment complexity increases; it does guarantee collision
avoidance (at least for static obstacles) and can be computed on line; it does
not suffer from excessive influence of obstacle repulsion fields; its complexity
increases only linearly with higher dimensions; it is ideally transparent, i.e., it
does not introduce any significant distortion of higher-level controls in all but
emergency cases; and it fits in control hierarchies.

The reflexive command filter consists of two sub-modules which operate
asynchronously. One module is the C-space inspector and the other is the
active command filter. The C-space inspector corresponds to the reflexive
command filters virtual sensor and the active command filter is the active

component of the reflexive command filter.

39

The C-space inspector produces an obstacle-free C-space prism, which the
active component uses to determine whether the currently incoming command
should be approved or replaced with a predefined braking policy. A crucial
construct of our reflexive collision avoidance scheme is the concept of the
braking prism. The braking prism contains the robot’s trajectory resulting
from enforcement of a braking policy. If it can be proven that the braking
prism will stay within the free space prism during the next execution cycle if
the current command is approved, then the current command will be approved.
If this is not the case the current command will be replaced by a braking policy.

The primary objective of the reflexive command filter is to guarantee sys-
tem survivability. The reflexive command filter is particularly useful when
new applications programs are being tested, or when a robot is teleoperated.
However, it has also been proven to be an ideal local operator in subgoal based

path-planners.

Chapter 6

The Reactive Trapezoidal Trajectory

Generator

The reactive trapezoidal trajectory generator accepts position commands and
generates continuous trajectory commands. These commands are issued as
velocity commands when our servo-controller is a pure velocity controller, or
as position, velocity, and acceleration commands in the more general case.
The trajectory generator operates by planning a trapezoidal angular velocity
profile for each joint. Slope and height constraints on the trapezoidal velocity
profile restrict resulting trajectories to conform to the machine’s joint-by-joint
acceleration and velocity limits. Thus, all trajectories generated can be exe-
cuted feasibly by the underlying tracking controller. At the same time, though,
the trajectories generated are nearly time-optimal. A crucial new feature of
our trajectory generator is that it is “reactive.” That is, it is not necessary
to complete any one planned trajectory before responding to new position
commands. New trajectory plans are continuously recomputed with initial

conditions equal to the current robot state, and goal conditions equal to the

90

91

current position command. This feature is essential if the robot is working

under reflex control.

Velocity Braking distance

I [11 time

Figure 6.1:

The reactive trapezoidal velocity profiler first determines whether the robot
should accelerate, move with a constant velocity or brake. Then it generates
new trajectory commands based on the current state of the robot. In the case
where the reactive trapezoidal trajectory generator generates commands to
a PD-DD (position-velocity-acceleration) controller, it provides the following

control law for each joint (The regions refer to Figure 6.1).

e Region IIT : If 0|d|/0t < 0 and |d| < dprake, where d = 045 — 0 and dprqre
is the braking distance, assert maximum braking. The maximum braking

is asserted by generating the following commands to a PD-DD controller:

Qges = —sgn(d)maz (6.1)

Wies = sgn(d)/2|d|amax

Hdes = 0+ woldAt -

92

sgn(d)apan At?/2

where ayg., 1s the desired acceleration, a,,,, the maximum acceleration,
wges the desired velocity, 04.5 the desired position, w,q = w(t — At) the
last velocity command, and At is the loop time of the servo program, or

in other words the time that elapses between command updates.

Region II : else if w > (1 — €)wmq, assert constant velocity, where wpq.
is the maximum velocity and ¢ is a small constant that is adjusted for
adequate noise immunity. Constant maximum velocity is asserted by

generating the following commands to the PD-DD controller.

Qges = 0 (6.2)
Wies = sgn(d)wmax

Oies = 0+ sgn(d)wmar At

Region I : else assert maximum acceleration. This will happen if we are
moving in the opposite direction to where we want to be or the velocity
is less than wpe, and |d| > dyrare. Maximum acceleration is asserted by

generating the following commands to the PD-DD controller.

Qdes = sgN(d)maz (6.3)
Wdes = Sgn(d)amaxAt+wold

Hdes = 0 + woldAt +

93
sgn(d)apap At?/2

In the case where the reactive trapezoidal trajectory generator generates
commands to a velocity controller, it provides the following control law for

each joint:

e Region IV : If |d| < o, where o = 0.5° in our experiments, generate a ve-
locity command that results in the same commanded torque as a fictitious
PD controller. The purpose of this is to ensure that the robot is brought
close to the goal. We assume that the velocity controller generates torque
commands according to Temd = K,(w4es — w), and that the PD controller
used in our comparison i Tend = Kp(fges — 0) + Ky(wges — w). The
PD-equivalent velocity command is asserted by generating the following

velocity command :

waes = K,d/ K, (6.4)

e Region III : else if d|d|/0t < 0 and |d| < dprare, assert close to maximum
braking. The maximum braking is asserted by generating the following

velocity command :
Waes = sgn(d) max(y/2|d|amazr, o K,/ Ky) (6.5)

e Region LII : else assert maximum acceleration or maximum velocity by

94

generating the following velocity command :

Waes = SEN(d)Wimaz (6.6)

The reactive trapezoidal trajectory profiler is smooth, non overshooting,
nearly time optimal, stable, adjustable, updates quickly, and is amenable to
quickly changing position commands, and is therefore ideal in the context of
reflex control. For the same reasons the reactive trapezoidal trajectory gener-
ator allows construction of systems which are capable of exhibiting stimulus-
responsive behaviors. The dominant class of machines outside the laboratory
utilizes velocity control at the analog level, thus a reactive trapezoidal trajec-
tory profiler generating commands to a velocity controller is applicable to a
broad range of machines. In Figure 6.1 we illustrate the general behavior of

the reactive trapezoid.

Chapter 7

On-line Path Planning and Obstacle

Avoidance Using Reflex Control

This section will discuss the use of reflexive obstacle avoidance in conjunc-
tion with higher-level obstacle avoidance and path planning methods. Motion
planning and obstacle avoidance are important aspects of robot autonomy.
Without a motion planner for robot’s, human operators have to specify every
detail of a robots motion, which can be very difficult or even impossible in
changing or dynamic environments. However, automatic obstacle avoidance
and motion planning is a very complex task. In this chapter I will give a brief
overview of different approaches to path planning 7.1, and then describe a few
path planners utilizing reflex control 7.2,7.5,7.6. A more extensive overview of

the different approaches in the field is given in [43] and [34].

7.1 Overview of Path Planning Methods

Motion planning methods in static environments are usually grouped into three

types of approaches :

95

96

e The road map method or the skeleton approach. In this method the free
C-space is retracted to a network of one-dimensional lines. Examples of

this approach are :

— The visibility graph. The visibility graph is a collection of lines in
the free space that connects a feature of an object to that of another.
Figure 7.1 illustrates the visibility graph of polygons, where vertices
are used as features. This method is one of the earliest path planning
methods [60] and it has been widely used to implement path planners

for mobile robots.

Goal

Start

Figure 7.1: Visibility graph. Solution path is shown in bold lines.

— The Voronoi diagram. The Voronoi diagram is the set of points that
are equidistant from two or more object features. Figure 7.2 illus-
trates the Voronoi diagram graph of polygons, where the polygon

edges are used as features. This method was first introduced in [61].

— The silhouette method. In the silhouette method higher-dimensional

objects are projected to lower dimensional objects and then traces

97

Goal

e

Start

—

Figure 7.2: The Voronoi diagram. Solution path is shown in bold lines.

out the boundary curves of the projection. The silhouette curves are
recursively projected to a lower-dimensional space, until they become
one-dimensional lines. The curves are then connected at places where
new silhouette curves appear or disappear using linking curves. This
method is useful in high dimensional C-space and has been used in
4D C-space. In Figure 7.3 2D and 3D examples of silhouette curves

are shown. The silhouette method was developed in [22, 23].

— The subgoal network method. A list of reachable configurations from
start to goal is maintained. The reachability of one configuration from
another is determined by a local path planner called local operator.
Moving along a straight line is an example of a local operator. In
this method the goal and the start position is connected to a subgoal
with the help of local operator. Next a sequence of subgoals is found
which connects start and goal. The local operator is then used to

navigate between the subgoals. This method was introduced in [28§]

98

Goal

Linking Curves _/Silhouette Curves
z : N
Y "r /
x e

Figure 7.3: Silhouette method in 2D and 3D. The silhouette curves in the 2D
example are the boundary curves of the polygons. The linking curves from
are straight ines from start and goal. The ellipsoid in the 3D example has a
cylindrical hole. It is projected on the X-Y plane, with the resulting silhouette
curves marked with a black solid curve. The linking curves shown connects the
silhouette curves for the cylinder with the silhouette curve for the ellipsoid.

and completed in [25]. Other local operators could be potential func-
tions or a reflex controller. This method can be used for robots with
a large number of degrees of freedom. An illustration of a subgoal

network with straight line moves as a local operator is shown in 7.4.

— The freeway method. In the freeway method a generalized cylinder of
free-space is found in the robots work space. This robot moves along
the spine of this generalized cylinder. It is predetermined whether

it 1s possible to rotate at the different locations along the spine, and

99

Goal

Start

Figure 7.4: Subgoal network using straight line segments as a local operator.

this information is used in the path-planning step. The method was

introduced in [14] and is used for mobile robots.

o Cell decomposition approaches. In this method the C-space is decom-
posed into a set of simple cells, and the adjacency relationships among
the cells are computed. The cells containing the start and the goal are

identified and then the adjacency relationships connect the two cells.

— Object-dependent decomposition. The boundaries of the obstacles
are used to generate the cell boundaries. The number of cells is small,
but the complexity of the decomposition and adjacency computations
are high. Object-dependent cell decomposition is illustrated in Fig-
ure 7.5. Different approaches to object-dependent decomposition are

described in [66, 67, 3].

— Grid-decomposition. C-space is decomposed into a large set of free

or taken cells. This is illustrated in Figure 7.6.

100

|

le 2

art

Figure 7.5: Object dependent cell decomposition.

Goal

1917
16

14

12

2
Stal

-

Figure 7.6: Object independent cell decomposition, using a grid.

— Octree or quadtree decomposition. C-space is decomposed into cells
which are either free, taken or mixed. The mixed cells are further

decomposed into smaller cells.

e The potential field approach. In this approach a scalar function called the
potential is constructed. The potential function has a minimum at the
goal configuration and a high value around obstacles. The potential field
approach 1s used for both obstacle avoidance and global path planning.
The idea of using potential functions for obstacle avoidance was used in

[37] and in [32] for force control. It was also developed independently in

101

[52] and [63]. When a potential function is used for local obstacle avoid-
ance the virtual force resulting from the potential function is computed

and applied to the motors.

An example of how to use potential functions for global path planning is
the gradient approach. The gradient of the potential field is computed
and a segment is generated in the direction of the gradient. From the
new position a new segment is computed, etc. Another approach is the
grid approach. A grid is constructed with a specific potential function
value. A path is then generated searching the surrounding cells for lower
potential function values. Potential functions can either be precomputed
and formed into a grid of function values or computed on-line from ob-
stacle features. In the latter case you get a continuous potential function.
However, in the latter case it will also be more difficult to retrieve the

potential function value in a time efficient fashion.

A common problem when using potential functions for global path plan-
ning is that they often result in local minima. Another problem is that
potential functions usually do not consider local dynamic behavior. A
variety of potential functions have been proposed in the literature which
are aimed at either improving local dynamic behavior, or reducing the
number of local minima and/or the size of their attractive wells. One

example of a potential function that attempts to improve local dynamic

102

behavior is the generalized potential field [41] which is a function of both

the robot’s configuration and velocity.

A potential function with a minimum located at the goal and whose at-
tractive domain includes the entire free space is called a global navigation
function. In [38] Koditschek showed that in the presence of C-obstacles
a global navigation function does not exist in general. If there are N
disjoint C-obstacles the Potential function must possess at least N sad-
dle points. However, it is possible to construct potential functions with
a minimum at the goal position whose domain of attraction includes all
free space connected to the goal position, except a set of points which
are saddles of the potential function. Such a potential function is called
an “an almost global navigation function” or simply a navigation func-
tion. In [65] Rimon and Koditchek developed a method for generating

navigation functions.

Numerical Navigation Functions : Its is very difficult to construct an
analytical navigation function over a free space of arbitrary geometry.
However, the computation of a numerical navigation function over a rep-
resentation of the configuration space in the form of a grid turns out to
be a much easier problem. In [4] Barraquand and Latombe proposed a

method for computing numerical navigation functions. A wavefront is

103

expanded starting at the goal. This wavefront cannot traverse obsta-
cles, instead it is diffracted around obstacles in a similar fashion to real
waves. Finally this wave will reach the start position if a path exists
between start and goal. To generate a path the wave is followed back-
wards towards “older” and “older” wavefronts until the goal is reached.
This is illustrated in Figure 7.7. The navigation function is free from local
minima and therefore guarantees a solution if one exists. Unlike other po-
tential function methods the numerical navigation function is computed
globally. This means that it will find a path to the goal if one exists, but
it also means that the computation is more time consuming than it is for

local potential function methods.

~-Goal

Figure 7.7: Illustration of navigation function.

In this section I will describe how reflexes can enhance the performance
of path planning methods and also make it easier to construct efficient path
planning methods. One way reflexes enhance higher-level path planners is that
the reflex controller guarantees obstacle avoidance taking into account the dy-

namics of the system. Very few path planning methods take into account the

104

dynamics of the robot system and those which do are either computationally
extremely complex or they invoke extremely conservative approximations. Re-
flex control is also ideal as a local operator in the subgoal-based path planning
approach. Reflex control further allows for large deviations from pre-defined
paths without this resulting in collisions. This can be used to construct nearly
time optimal path planning algorithms which do not attempt to generate ex-
act paths. It should be noted that the reflex controller also can be used as a
safety device which protects the robot from collisions in case the higher-level
path planning algorithms generates dangerous commands. I will in the follow-
ing give examples of efficient obstacle avoidance and path planning algorithms

which rely on the reflex controller for their performance.

7.2 Obstacle Avoidance Using Reflex Con-

trol and Guiding Potential Functions

Guiding potential functions are local potential functions which are applied in
conjunction with the reflexive command filter, and computed on-line. The
purpose of the guiding potential is to enhance the navigation capability of
a system utilizing the reflexive command filter, without adding higher level

planning capabilities to the system. Our guiding potential function alleviates

105

some of the restrictive behavior of our reflex controller. The current improve-
ment can be explained best in terms of energy. If a joint-space goal point,
Qg0a , 18 represented as an attractive potential function, then we can evaluate
the energy associated with any pose of the robot, q , as F = Y.V, F; where
E;, = %Ki(qdew — ¢;)®. Under our reflex control, joints are controlled in a
manner which enforces d(F;)/dt < 0 for each joint 7. Alternatively, a typ-
ical potential-function controller would execute a path corresponding to the
steepest descent of the total energy, . At an obstacle boundary, moving into
an obstacle is equivalent to a steep positive energy gradient. As a result, the
steepest descent of F near an obstacle might well require an increase in one
or more individual joint energies, F;. Thus, potential-function controllers can
often continue to make progress towards a goal (dF/dt < 0) in cases where
reflex control alone would stall (d(F;)/dt > 0 for some j).

The effects of our reflex control and potential-function control are con-
trasted in Fig 7.8. In this figure, there is a smooth obstruction between a
robot position and the goal. Under the influence of a potential function, the
robot would be attracted to the goal along a path of continuously decreasing
total energy, and it would succeed in circumventing the obstacle. Our joint-by-
joint reflexes, on the other hand, would cause the robot to stall at the point
indicated. Further motion from here would result in an increase in Fy, the

energy associated with link 2, and is thus forbidden by the reflexes.

106

Joint 2
X Subgoals take us further

X

Reflexes will
takeushere

Joint 1

Figure 7.8: The reflexive command filter will not overshoot any individual
joint goal en route to the final goal

Although our joint-by-joint implementation of the reflexive command filter
is less competent than potential functions, its implementation is highly effi-
cient and dependable. To enhance competence, we added a guiding potential
function as a higher layer. This higher layer generates subgoals equivalent
to the path which would have been taken by a potential-function controller
alone. These subgoals are submitted to the reflexes, thus guiding the robot
through a path which is incrementally achievable under reflex control. Thus
the guiding potential function layer imitates the action of a potential function
but relies on the reflexes to protect the robot from colliding with obstacles. In
general we can construct a guiding potential function for any purpose— to get
around obstacles, to start avoiding them at an early stage, etc. The important
thing to note is that a guiding potential function relies on the reflexes for guar-
anteed obstacle avoidance, and details of robot dynamics may be ignored by
the higher-level guiding potential function. Since the reflexive command fil-

ter absolutely prohibit collisions, any guiding potential function may be used,

107

regardless of the guiding function’s inability to guarantee collision protection
(e.g., we may use [38],[36], or [2]).
In our implementation, we have investigated three guiding potential func-

tions:

o A configuration-space guiding potential function that computes energies
as a function of distance in joint-space to a specified joint-space goal,
Qdes,i , assuming a virtual joint stiffness matrix K :

Ecg = vazl K,ii(qaesi — gi)* In this case the guiding potential function
results in the same path as the joint by joint reflex controller when no
obstacles are present. When at the boundary of an obstacle, though, the
guiding potential function leads the robot around obstructions when such

motion would decrease total energy.

o A workspace guiding potential function that computes energies as a func-
tion of distance to a specified hand pose, @4, (with a large workspace
stiffness K), plus a weak attraction to a preferred joint pose, @ges (with

weak joint-space stiffness K,):

M N
Ews = Z Ko ii(Taesi — i)* + E Ko ii(qaesi — qi)°

=1 =1
It is often more interesting to position the tool at a certain location in

work space, rather than achieving a certain robot configuration. This

108

guiding potential function is active everywhere in space and generates
subgoals that are closer to the workspace goal. Independent of where in
space the robot is located this layer tries to find voxels in the vicinity of
the current position that do not belong to obstacles and are closer to the
goal in work space than the current position. This layer will thus generate
subgoals to the reflex layer that will take the robot around obstacles in
a stable manner. This guiding potential function guides the robot in the

entire space, and is therefore not minimally influential.

o An augmented task-space potential function that computes energies as a
function of distance to a specified task-space goal, y4.s consisting of the

hand pose and an elbow angle :

N
ETS = Z](y,ii(ydes,i - yz)Z (71)

=1

By using augmented task-space coordinates, the joint space term is elim-

inated.

where @4.5 is an M-dimensional desired workspace goal, and ., 1s an
N-dimensional desired joint-space goal.

In the case of the configuration-space potential function, the guiding po-
tential function results in the same path as the joint-by-joint reflex controller

when no obstacles are present. When at the boundary of an obstacle, though,

109

the guiding potential function leads the robot around obstructions when such
motion would decrease total energy.

In the case of the workspace potential function, the arm path is defined
instead by attraction to a hand goal. A weak joint-space potential function is
added to the hand energy to prevent erratic null-space motions.

We note that it is feasible (and often useful) to bypass the guiding poten-
tial function, or to switch in an alternative guiding potential function sponta-
neously, and we may do so without danger of an ensuing collision. However,
if one chooses to switch control modes, the result can be robot trajectories
which cycle in an infinite loop or which chatter. From an energy perspective,
one can evaluate the stability of prospective switching laws. In each alterna-
tive potential-function mode, we define energy gradients with respect to the
selected mode’s measure of energy. We may switch among multiple modes and
still guarantee no sustained cycling or chattering provided: 1) all energy mea-
sures have a global minimum at the same goal state (i.e., all modes agree on
the ultimate objective); and 2) the energy measure of a mode to be switched in
is lower than the energy measure of that mode when it was last switched out.
(We may initialized all mode energies to infinity). Under these conditions, it
is impossible to revisit any state under the same control mode, thus excluding
the possibility of sustained cycling or chatter.

In our experiments, we have found mode-switching to be useful in achieving

110

faster robot motions when the robot is sufficiently far from obstacles. Since the
reflex control evaluations permit full-speed robot motion in free-space, which
is generally faster than competing potential function evaluations, we choose to
bypass the guiding potential functions when they are not needed. We may do
so without risking collisions, and, provided we abide by the preceding mode-

switching energy constraints, without stability problems.

7.3 Implementations of Potential Function Lay-

ers in Discretized Configuration Space

Although we have stated a conceptually satistactory description of guiding
potential functions, we encountered practical problems in implementation. A
significant problem for energy-gradient-based methods acting in a discretized
space is that discretization causes false local energy minima and maxima, as
illustrated in Fig 7.9. In this figure, a goal is located at the center of a circular
obstacle. In a continuous space, we would measure the same energy everywhere
on the obstacle boundary. In discretized space, we forbid entry into any cell
which contains any part of an obstacle, and free-space cells are assigned a
single energy corresponding to the coordinates of the center of the cell. Fig
7.9 shows several of the false energy minima and maxima which result from

discretization.

111

To mitigate the discretization problem, our potential-function module is
implemented as follows. For each robot state, we continuously compute the
goal attraction energy for all free-space voxels in an N-space hypercube cen-
tered on the current robot state. (In our implementation, we normally inspect
a hypercube of 7* voxels in 4-D C-space). The voxel with the lowest attractive
energy within the search volume is selected as a subgoal. Note that forbidden
voxels are excluded from the evaluation; thus the potential-function search
becomes more efficient as the number of obstacles increases. Since our search
selects the lowest-energy voxel within a defined neighborhood as a subgoal, it
is possible to “tunnel” through a limited number of higher-energy voxels en
route to a lower energy voxel. By considering energies of voxels which are not
immediately adjacent to the current robot state, our guiding potential func-
tion is based on some smoothed neighborhood energy gradient, which helps

reduce the ill effects of C-space discretization.

False _|» Fa]se
Maximum Minimum

False = |
Minima~Ng

False alse
Maximum™ Minimum

Figure 7.9: False Energy Minima and Maxima Due to C-space Discretization

112

7.4 Experiments on a Kinematically Redun-

dant Industrial Robot

The system described here was implemented on the first four joints of the
Robotics Research Corp K-2107THR robot arm. Our task-space commands
consisted of the desired Cartesian coordinates of the wrist, which left an “elbow
orbit” redundant degree of freedom available for obstacle avoidance. Both the
joint-space and the workspace guiding potential functions described above were
tested in coordination with reflexes, and the robot showed an ability to avoid
collisions and circumvent obstacles quickly. Finally, and most importantly,
a guiding potential function permits task specification in a lower dimension
than the joint space. The robot’s kinematic redundancy is then automatically
utilized by the reflexes for on-line obstacle avoidance.

Figure 7.10 illustrates a recorded example of the reflex-controlled robot
moving in a cluttered environment using subgoals generated by a work-space
based guiding potential function. With respect to Figure 7.10, the top picture
illustrates the robot in pose I. From this initial pose, the robot is commanded
to reach each of three new poses, poses 11, III, and 1V, as shown. “Snapshots”
of the robot’s resulting path in C-space are illustrated in the scenes to the right.
These scenes display 2-D C-space slice projections, where each slice projection

shows forbidden poses as a function of two joint angles with the remaining two

113

joint angles fixed. In scenes of 83 vs 8, the “stalactite” extending from the top
of the frame corresponds to the coat rack, and the island blob corresponds to
the box obstacle. The pose of the robot in each instance is at the intersection
of the crosshairs. The barcharts to the right display the robot’s actual joint
angles, in degrees, corresponding to the displays of C-space.

In the first move, the robot successfully moves from Pose I to Pose Il
through intermediate configurations of II.A, II.B and II.C, where II.C cor-
responds to Pose II. The robot reaches the Pose 11 goal wrist state by utilizing
its null-space mobility, and orbiting its elbow to avoid the coat rack.

In the next sequence, the robot again starts from pose I, and it is com-
manded to place its wrist at a point on the opposite side while negotiating
obstacles of the coat rack, a box, the floor, and joint limits. Scenes III.A,
ITI.B and III.C show intermediate poses of its path, where III.C corresponds
to the illustrated goal state Pose III.

Finally, the robot is instructed to move from Pose I to Pose IV, where Pose
IV corresponds to a wrist goal inside a box. C-space images IV.A, IV.B and
IV.C illustrate the resulting path; IV.C corresponds to the goal Pose IV. It
is interesting to observe that this desired robot pose corresponds to a small,
confined “hole” of freespace surrounded by obstacles in most C-space views.
Although a seemingly complex path solution is achieved, it was obtained from

our very low-level energy-based controller.

114

115

7.5 Obstacle Avoidance Using Reflex Con-
trol and Quickly Computable Continuous

Potential Functions

Potential functions are usually either precomputed and stored as grids of data
or computed on line from obstacle features and the goal location. In the
first case it is very easy to retrieve the value of a potential function on line.
The potential function will in this case be discretized. In the second case
the potential function will be continuous. However, for complex or multiple
obstacles it will be a time consuming operation to retrieve the value of the
potential function. As mentioned above the potential function can be used for
both on-line obstacle avoidance and global path planning, where the global
path planning is done either by searching a potential function grid or using
the gradient method.

In this section I will describe a potential function which I used for global
path planning in an early version of my sonar-based world mapping system
described in 9. On-line obstacle avoidance was performed by the reflexive
command filter. This potential function is partly precomputed and partly
computed on line, it is continuous and very easy to compute on-line. In the
precomputation step discrete waves are generated around the obstacles, and

the “wave voxels” in the wave fronts are numbered in accordance with their

116

distance to an obstacle. This is illustrated in Figure 7.11. A continuous
potential is then found on-line from the wave voxel number at the current
location and the wave voxel number of the neighboring wave voxels, and the
current location within this wave voxel. The computed value will be a non-
Euclidean measurement of the distance to the closest obstacle. The distance
measurement used is min(6q,0z,03,6,4) or min(z,y,z) depending on whether
the potential function is applied in C-space or the work space. The proce-
dure for computing the potential function value on-line can be summarized as

described below. Please refer to Figure 7.12 for a supplementary illustration.

0i1i2i314
ologlo 011233 [3
0O{1fo/o0|031i2[2]2
Olof1[1 [T 7T]a]1/11
olofi1|1i231i0]/0]/0] 0|0
1/a1/13i2]2%130 0
2/2 /212|213 0 0
3/3/3[3]/2}1i0/0]/0]0]0

Figure 7.11: Tllustration of wave voxel values around two obstacles.

1. Read the wave voxel value of the current position.

2. Find the distance min(8y, 8, 05, 60,4) or min(z, y, z) to the neighboring wave
voxel with the lowest wave voxel number. If several neighboring wave
voxels have the same value pick the overall shortest distance. Add the
fraction, of this distance and the voxel size, to the current wave voxel

value. Now you have a non-discrete measurement of the distance to the

117

closest obstacle, derived from discrete local information.

3. Use this distance measurement to form a continuous potential of desired

type.

It should be noted that this potential does not contain any local minima.

L]

(o} A 6_—14-05
||] - 1.95 Equipotential
—0 L I~ 4 Vvalues
A 1.8
T x P -
! f
1_‘5 2{6

Figure 7.12: The distance measurements are illustrated in this figure as wave-
like equipotential lines. The potential function is easily derived from current
wave voxel value and the neighboring wave voxel values. The resulting function
is continuous and does not contain local minima.

The paths generated by the potential function were filtered through the
reflexive command filter, and in the instances the paths were flawed (devel-
opment stage) the paths were rejected, and in the instances the robot due to
dynamics was unable to follow the paths generated by the potential function,
the reflexive command filter protected the robot. This potential function was
also used for non-planned on-line attraction and retraction from dangerous and
intersecting places. In these instances the reflexive command filter protected

the robot from the dangerous commands that occasionally were generated.

118

7.6 On-line Path Planning Using the Reflex-

ive Command Filter

The 4-D on-line motion planning algorithm described here is an augmentation
of the 3-D motion planning algorithm developed for monodextrous industrial
robots described in [39, 40]. The efficiency of the path planning algorithm
is due to the fact that the reflexive command filter is able to bring the robot
between so-called critical points in configuration space in a nearly time optimal
manner, while guaranteeing fail-safe collision avoidance.

The path planning algorithm uses 2-D slices of the discretized 4-D C-space.
We chose to slice the 4-D C-space into 3-8, slices along the §; and 6, axes. A
very important building block in our 4-D path planner is our reflex-based 2-D
planner. The 2-D planner is able to bring the robot to a specified goal within
a given 2-D C-space slice by generating a small set of subgoals achievable
using the reflexive command filter. First the 2-D planner identifies the critical
points within the 2-D C-space slice. These critical points are peaks of C-space
obstacles as illustrated in Figure 7.13. These peaks are extremal points on
the border curves of the C-space obstacles with respect to one of the joint
coordinates. For reasons explained in Section 5.5, the reflexive command filter
is unable to bring the robot around such peaks. If such peaks exists in the

current 2-D C-space slice, and they represent impediments to the reflexive

119

command filter, then the 2-D planner uses these peaks to generate a set of
subgoals that are given to the reflexive command filter. An example of how
this can be done is described in [39, 40].

The first task of the 4-D path planning algorithm is to identify connected
regions of free-space within each 2-D slice. These regions of free-space are
called F-regions and are illustrated in Figure 7.14. The second task of the
planner is, for every F-region, to identify which F-regions in the neighbor-
ing 2-D slices the F-region is connected to, and generate a table describing
these connections. This table is called the inter-region graph. Two F-regions
are connected if they belong to two adjacent 2-D slices of C-space, and have
overlapping areas of free-space.

S22

A

Critical
Points

Figure 7.13: Reversal sets and F-regions.

Such connections are illustrated in Figure 7.14. If the current position of
the robot is located in an F-region F,, and F, is connected to an F-region Fj,

the robot could be moved to Fj by first moving the robot to an area where

120

Slice-1 Slice-2
F-region| connected to

34
3,5
6,7,8,1,2
1,6
7,8
4,3
3,5
3,5

O~NO UL, WNDNE

Figure 7.14: Inter-region graph for 8 F-regions located in 3 adjacent C-space
slices

F, and Fj overlap, and at that point cross over from F, to F,. The third task
of the planner is to identify the F-region where the goal is located, and the
F-region where the current position is located, called F,a and [respec-
tively. Using the inter-region graph the planner then finds a path through the
connected F-regions that connects fgoa to Liar, using a graph search method.
The 4-D planner uses the 2-D planner to navigate within the F-regions. On
execution the robot is moved from its start position within K. to a point
which belongs to an area overlapping with the next desired F-region. When
this point is reached the robot crosses over to the next F-region, and repeats

this operation until f,, is reached. From there, the 2-D planner guides it

121

to the goal. Our 4-D motion-planning algorithm finds a solution whenever a
solution exist. It is on-line in the sense that when new goals are requested,
new paths are generated while the robot is moving. If new obstacles are
brought into the robot’s environment, a new C-space map must be computed
and the corresponding F-regions identified. However, with our configuration
space generator (described in Section 4) this can be done fairly quickly. An-
other important virtue of our path-planner is that it generates subgoals to the
reflexive command filter instead of paths to a servo-controller, thus making
it possible to utilize the full speed and acceleration capabilities of the robot,

while maintaining obstacle avoidance.

7.7 Conclusions and Overview for Chapter 7

This chapter discussed the use of reflexive obstacle avoidance in conjunction
with higher-level obstacle avoidance and path planning methods. First an
overview of existing path planning methods was given. The path planning
methods discussed were the visibility graph, the Voronoi diagram, the sil-
houette method, the subgoal network method, the freeway method, object-
dependent cell decomposition, grid-decomposition, octree and quadtree de-
composition, the potential field approach, and numerical navigation functions.

Especially the subgoal network method has received considerable ttention

lately due to its efficiency [28, 25, 34]. The local operator in subgoal networks

122

usually consists of straight lines. However, introducing local potential func-
tions as local operators has been discussed. This chapter suggest an alternative
local operator, the reflexive command filter. If the reflexive command filter
is used, the critical points are very easily defined, the critical points are few,
and the robot does not necessarily have to follow a predefined path. Due to
the high speed of the reflexive command filter and the fact that it guarantees
obstacle avoidance, but still is transparent in all but emergency situations, this
approach allows the robot to utilize its full acceleration and speed capabilities
without invoking specific knowledge of the robot dynamics at the planning
level.

The reflexive command filter in conjunction with guiding potential functions
and quickly computable continuous potential functions was also discussed.
Guiding potential functions are potential functions which are computed on-
line locally, and which purpose is to enhance the navigation capability of the

robot when using the reflexive command filter.

Chapter 8

Reflexive Avoidance of Moving Obstacles

To deal with obstacles approaching the robot we developed a flee reflex. The
flee reflex generates commands to underlying levels which steer the robot away
from an approaching object. Unlike the reflexive command filter which contin-
uously approves or disapproves higher-level commands, the flee reflex remains
inactive until an approaching object is detected. So far we have developed two

types of flee reflexes:

o The wall-emulating flee reflex in which an approaching obstacle is modeled

as an approaching wall. This flee reflex will be described in Section 8.1.

e The block-emulating flee reflex in which non-static obstacles are modeled
as occupied blocks of work space. This flee reflex will be described in

Section 8.2.

8.1 The Wall Emulating Flee Reflex

We tested the wall-emulating flee reflex in the context of two moving robots
sharing a common workspace. In our implementation one of the robots, a

123

124

Hitachi PW-10, had a fictitious protective wall located at its tool position,
while the second robot, a Robotics Research K-2107THR, avoided this wall. In
our setup the wall moves in front of the PW-10 along the y-axis. The reflexive
command filter protected the RRC from colliding with the fictitious wall, and
the wall-emulating flee reflex repelled the RRC away from the fictitious wall
when the wall touched and advanced towards the RRC. The experimental

setup is illustrated in Figure 8.1. An overview of the system is given in Figure

8.2.

Figure 8.1: The fictitious PW-10 wall pushes the RRC-robot away.

In this implementation the wall-emulating flee reflex inspects the C-space
and generates a fleeing motion if the C-space obstacle corresponding to the
wall advances towards the RRC robot’s current location. We precomputed
the C-space obstacles corresponding to the fictitious wall located at different
positions. These C-space obstacles are activated when the tool position of the

PW-10 robot reaches the corresponding wall positions. This way the C-space

125

Higher level
Controls
Flee Efle&req lEHigh—level-req
Reflex ~
E e
Reflexive
command
filter
l Ecmd
Robot

Figure 8.2: The flee Reflex in the system hierarchy. When an obstacle is
detected, higher-level commands are replaced by flee reflex commands.

corresponding to the wall 1s updated at a rate of T00Hz.

As soon as the tool of the RRC intersects the fictitious wall, the wall-
emulating flee reflex generates a starle reflex. The starle reflex quickly moves
the robot away from the wall, but not necessarily in the direction of the y-
axis. Next, the retraction reflex is generated. The retraction reflex moves the
RRC away from the wall in the direction of the y-axis. The motivation behind
using the starle reflex is that it can be calculated in 2-3 ms, and can, for that
reason, be used to generate a protective action before the computations needed
for the retraction reflex are completed. The computations for the retraction
reflex take slightly less than 100ms. The starle reflex will remain active until
the computations for the retraction reflex are done. The retraction reflex will
remain active until the robot has moved away from the fictitious wall a distance
corresponding to two voxels in C-space. As long as the fictitious wall is not

approaching the RRC the reflexive command filter guarantees that the tool of

126

the RRC, and the fictitious wall never intersect.

The starle reflex is computed from the gradient of a flee potential with
respect to the joint coordinates. The flee potential F(z,y,z) corresponds to
a virtual force which is applied to the end effector of the robot. This virtual
force pushes the end effector in the direction of the desired flee direction. In
our case the RRC retracts in the direction of the y-axis, and for that reason
we chose the flee potential to be F(z,y,z) = —kry. The constant ks is in
this case equal to the size of the constant virtual force applied to the end
effector. kr is chosen to be large enough to cause the robot to withdraw in
the flee direction with an acceleration close to the joint acceleration limits.
We have V.F(0y,05,05,04) = JIVF(z,y,2z) = JT(0,—kzr,0)T where JT is
the Jacobian transpose. The gradient of the flee potential with respect to
the joint coordinates results in a hand motion which is not parallel to the
desired flee direction. Rather it corresponds to the direction which would
result in the largest possible change of F with a small change of the joint
coordinates. The starle reflex generates the joint velocity command vector w
= —k,VF(b1,0s,0s3,04) to the robot (where k, is a velocity scale factor).

The retraction reflex moves the robot in a straight line along the y-axis.
This is accomplished generating the joint velocity command w = —J; 'k, V.F(z, vy, 2, 8),
where in this case the inverse Jacobian is calculated using augmented task-

space coordinates,as defined in [68], and —k,VF(z,y,2,6) = (0, ®ee,0,0)T.

127

The task-space coordinates we used were the three tool-position coordinates
(z,y,z) and the angle (¢) between a predefined vertical plane and the plane
containing the robot’s shoulder, elbow and wrist as described in [68].

The reflexes discussed above allowed the RRC to share workspace area with
the moving PW-10 robot, by preventing collisions between them. Since the
reflexive command filter was activated at the same time, the RRC concurrently

avoided all static obstacles.

8.2 The Block Set Emulating Flee Reflex

We also developed what I call the block-emulating flee reflex. In the block-
emulating flee reflex moving obstacles are considered to occupy a set of world
space blocks. When the PW-10 moves into the work space of the RRC, the
body of the PW-10 will intersect a number of blocks in the work space of the
RRC. This is illustrated in Figure 8.3. The blocks are predefined, and are
40cm wide and long and 60cm high. It is possible for the PW-10 to occupy
24 different blocks in the work space of the RRC. The arrangement of these
24 blocks is shown in Figure 8.4. The C-space for each block is precomputed
and stored in global memory. The C-space corresponding to a particular block
is activated when any part of the PW-10 intersects the corresponding block.
This way several “block C-space” might be activated at any particular point. It

should be noted that the C-space corresponding to the blocks, are not blocks.

128

Instead, the C-space are complex “snake looking” 4D constructions which to
a large extent overlap each other. The program loop which determines which
blocks the PW-10 intersects, runs at a speed of 40-50Hz on the same cpu as

the PW-10 servo-controller.

Figure 8.3: The PW-10 robot occupies different blocks depending on its posi-
tion.

\
|

| T

PW-10 wor
envelope RRC work
envelope
Side View of Blocks View fromabove

Figure 8.4: There are 24 blocks in the common workspace of the RRC and
PW-10.

The desired flee direction is determined by the flee-potential field generated
by the occupied blocks and the position of the RRC tool in this field. The

flee-potential fields for each individual block are generated with respect to the

129

center point of each block. The individual flee-potentials are then superim-
posed on each other. There are two reasons for using the center point of the

blocks as the center of the flee-potential.

1. The flee-potential only indicates the flee-direction. There is not a direct
relationship between the gradient of the flee-potential and the torque
generated to the servo amplifiers. An infinite potential at the surface of

the cubes would not be of any help.

2. It is possible for the robot to find itself inside a block if, for example, the
PW-10 very quickly invades the RRC robots workspace. In this situation

we still would like the flee-potential to be defined.

The flee direction is computed using a potential function generated from the
blocks. In this case the flee reflex also consists of a starle reflex and a retraction
reflex. The starle reflex is computed from the flee potential using the following
formula, w = —k,VF(01,03,05,04) = —k,J'VF(z,y,z), and the retraction
reflex is generated according to, w = —J; "k, V.F(z,y, z, ¢), where the inverse
Jacobian is calculated using augmented task-space coordinates.

The reach of the flee potential is determined by the paranoia factor. When
the paranoia factor is high the RRC robot will stay away from the PW-10 at
a safe distance. When the paranoia factor is low, the RRC is more brave in its

attempts to get close to the PW-10. The reason behind introducing a paranoia

130

factor is that, the paranoia factor allows for adjustment of the system with
respect to the speed and the degree of predictability of the moving obstacles.

The use of a flee-potential which reaches beyond the C-space obstacles cor-
responding to the world-space blocks, introduces a problem. When the flee
reflex is turned off well outside the C-space obstacles, the robot will attempt
to move closer to its goal again, which might mean that the robot will reenter
the flee-potential, instead of colliding with a C-space obstacle. If the robot col-
lides with a C-space obstacle the reflexive command filter will prevent further
motion and keep the robot at a certain position. However, if the robot reenters
the flee-potential before this happens, the flee-response will be reactivated and
the result would be infinite chattering under static conditions.

To solve this problem we introduced the so called “hold reflex”. The hold
reflex 1s activated as soon as the flee reflex is turned off, and will keep the
robot at the point where it was activated, unless a higher-level command 1s
issued which would bring the robot away from the moving obstacles, or the flee
potential is either retracting or expanding. The hold reflex can be classified as
a command dependent reflex action. It should be noted that depending on the
paranoia factor, and the coarseness of the conservative C-space approximation,
it can be either the reflexive command filter, or the flee reflex which prevents

the robot from colliding with a “temporarily static” or slow moving obstacle.

131

8.3 Conclusions and Overview for Chapter 8

To deal with obstacles approaching the robot, a flee reflex was developed.
The flee reflex generates commands to underlying levels which steer the robot
away from an approaching object. Unlike the reflexive command filter which
continuously approves or disapproves higher-level commands, the flee reflex
remains inactive until an approaching object is detected. Two types of flee

reflexes were developed:

o The wall-emulating flee reflex in which an approaching obstacle is modeled

as an approaching wall.

e The block-emulating flee reflex in which non-static obstacles are modeled

as occupied blocks of work space.

Both flee reflexes were tested in the context of two moving robots sharing a
common workspace.

The wall-emulating flee reflex consists of two “sub-reflexes”: the retraction
reflex and the startle reflex. The startle reflex is computed from the gradient
of the flee potential with respect to the joint coordinates. This computation
is very fast and takes a few milliseconds. The retraction reflex on the other
hand moves the robot in a straight line motion along the y-axis, and takes
roughly 100ms. The static command filter protects the robot from collisions

under static conditions. The flee reflex is activated when the virtual wall

132

corresponding to the PW-10 robot is approaching.

The block-emulating flee reflex consists of the startle reflex, the retraction
reflex, and the hold reflex. The startle reflex is, in this case, also computed
from the gradient of the flee potential with respect to the joint coordinates.
The retraction reflex on the other hand moves the robot in a direction de-
rived from the gradient of the flee potential with respect to world coordinates.
The block-emulating flee reflex has a paranoia factor associated with it. The
paranoia factor determines the reach of the flee potential. When the paranoia
factor is high the RRC robot will stay away from the PW-10 at a safe distance.
When the paranoia factor is low, the RRC is more brave in its attempts to get
close to the PW-10. Under static conditions it was either the static command
filter or the hold reflex which controlled the robot. The reason the hold reflex
was needed was to hold the robot in positions defined by a high paranoia factor
which could be located far away from the actual C-space obstacle.

Both the wall-emulating flee reflex and the block-emulating flee reflex are
on-line, very fast, simple in design, and therefore practical. They could be
used as a means to prevent collisions in a multi-robot environment without

having to rely on complex planning algorithms.

Chapter 9

Reflexes and Fixed Action Patterns in

Sonar-based World Mapping

Reflexes and fixed action patterns can be used to build flexible, autonomous
systems which are robust with respect to unpredictable and noisy environ-
ments. We have developed a sonar-based world mapping system in which
reflexes and fixed action patterns are fundamental components. The exper-
imental testbed consists of six Migatronics transducers mounted at the tool
flange of a K-2107HR 7d.o.f. Robotics Research Corporation Manipulator.
The transducer functions as both a transmitter and a receiver of ultrasound.
The beam is cone-shaped with angle width of 30 degrees. The transducer
was able to find obstacles placed between 2.5 inch to 4 feet away from the
transducer.

Except for interpreting sonar data and generating maps, the system au-
tomatically generates an environment guided world exploration pattern. The
robot is able to explore its environment without having explicit information

about how to do this. The system is robust, flexible and allows for incremental

133

134

design. This is achieved by using behavioral modules like “reflexes” and “fixed
action patterns”.

The system initially assumes a predefined, possibly incomplete map of the
robot’s environment. The robot explores its environment and tries to find in-
consistencies with this predefined map. The system also allows the robot to
perform tasks while it continuously checks for inconsistencies. This way it is
possible to use the sonar-based world mapping system either by itself, or in
conjunction with other higher-level systems. A scheme similar to the method-
ology described in [5] is used to construct a map from the sonar readings. An
overview of the system hierarchy with the sonar-based world mapping system
as a module is shown in Figure 9.1.

An inconsistency is a reading by the ultrasonic sensor which cannot be ex-
plained as a reflection from an obstacle in the predefined map or from the robot
itself, or as a specular reflection. The sonar sensor will not always detect all
obstacles in the workspace. However, a detected inconsistency strongly indi-
cates the existence of unmapped obstacles. The robot investigates unmapped
obstacles by moving the sensor to different locations in the workspace while

directing the transducer beam towards the location of the found inconsistency.

135

Higher level
Controls

Y&sl E High-Level-req

Tasks? . ’/'No

v
Sonar-Based
World mappingd

Yed g
World > Sonar -r eq

mapping No
wanted? E req
Reflexive

Command Filter

wECmd
Robot or
M otor Control

Figure 9.1: If the robot has a task to perform or a destination to go to, the
robot attempts to complete these tasks, while the sonar-based world mapping
system interferes to protect the robot from unknown obstacles. If the robot
does not have a task to perform the sonar-based world mapping system com-
pletely controls the robot. In both cases the reflexive command filter protects
the robot from collisions with known obstacles.

9.1 A System Overview

The system consists of a number of modules, one set of sensor interpretation
modules, one set of world exploration modules, and one set of map generation
modules. The sensor interpretation modules determines whether the sonar

readings correspond to inconsistencies. The sensor interpretation modules are,

136

1. The echo interpreter, which uses the return time of the echo to generate

a corresponding distance.

2. The beam locator, which uses forward kinematics to determine the location

of the transducer, and to find the beam direction.

3. The inconsistency determinator, which based on the current world map
and the echo distance, determines whether the reading corresponds to a
reflection from a known obstacle, an invalid reading, or a reflection from
an unknown obstacle, or an obstacle under investigation. If a reading
corresponds to a beam which seems to have passed through a known ob-
stacle, this probably corresponds to a specular reflection and the reading

is declared invalid.

The world exploration modules are behavioral modules, such as fixed action
patterns, or reflexes. These behavioral modules can be modeled as a virtual
sensor active component pair. The information provided by the sensor inter-
pretation modules, together with internal sensor information like resolver data
etc., forms the different virtual sensors of the world exploration modules. The

world exploration modules are,

1. Look-Path, controls the motion of the tool (joint-5-6). It attempts to
direct the beam to areas in space where the robot is anticipated to be in

the immediate future. It is active when the robot has a task complete.

137

2. Look-Around, controls the motion of the tool and the robot. It generates
a robot motion in conjunction with a tool motion intended to eventually
sweep all work space with the sonar beam. It is active when the robot

has no task to complete.

3. Beam-At, controls the motion of the tool. It attempts to direct the beam
to areas in space where inconsistencies are found. It is activated by new

inconsistencies, and disactivated by “Investigate”.

4. Approach, makes the robot carefully approach recently discovered incon-
sistencies. Approach is halted several times by the “Halt reflex” to make
sure that, Beam-At is successtul in examining the inconsistency from a
distance. It is activated when Beam-At has been successful in one initial

examination.

5. Investigate consists of a series of robot motions and tool orientations
which places the sonar sensor at multiple positions and orientations in
the vicinity of recently found inconsistencies. Investigate is guided by the
sensor interpretation modules in determining the robots’ motion. The
sensor interpretation modules provides information about new inconsis-
tencies, and a temporary map provides information about old inconsis-
tencies. The distance, shape and size of the inconsistencies determines,

and continuously updates the motion pattern generated by Investigate.

138

The system also contains a Halt reflex which temporarily stops the robot
from proceeding. The Halt-reflex is activated when Approach is active, but
also when the robot is trying to complete tasks in an unknown environment.
The purpose of the reflex is to halt the robot for a while and give the system
a chance to “beam-out” unfamiliar environments.

There are five map generation modules. Two which generate only tem-
porary and local maps used for currently active modules like Approach, and
Investigate, and three modules which generate three different types of long

term maps. The five map generation modules are,

1. The Initial-Navigation-Map-Generator creates and continuously updates
a “voxel” based map of recently found inconsistencies. This map is gener-
ated during the Beam-At and Approach phase. Voxels in the work-space
are filled out as occupied in accordance with the sensor readings and the
beam-width. This is an inexact conservative map which is used for nav-
igation during the Approach and early Investigate phase. If the robot
is reinvestigating an earlier found inconsistency, this map is only created
and used if the new readings are inconsistent with the map for the earlier

found inconsistency.

2. The Temporary-Map-Generator creates and continuously updates a “voxel”
based map of recently found inconsistencies. If the area where the incon-

sistency 1s found is completely uninspected this map is built from scratch.

139

If the robot is reinvestigating an earlier found inconsistency, or a new in-
consistency in a previously investigated space, the “voxel-based map” last
created 1s initially copied to this map. Voxels belonging to this map are
labeled empty, occupied, unknown, or conflict. Unknown, means that
the voxel has not been labeled yet, empty means that the voxel has been
labeled as obstacle free, occupied means that the voxel has been labeled
as containing an obstacle, and conflict means that two or more map gen-
eration iterations has labeled the voxel as both empty and occupied. The
conflicts are resolved as empty if they are interpreted as beam-width con-
flicts and occupied if they are interpreted as a result of specular reflections.
This is described in greater detail in [5]. During the Investigate phase the
map generated for navigation by the Initial-Navigation-Map-Generator is

replaced by the map generated by the Temporary-Map-Generator.

. The Vozel-Based-Map-Generator creates a long-term map using the Temporary-
Map at hand when the Investigate phase is over. The Voxel-Based-Map-
Generator assigns a so called “confidence level” to the occupied and empty
voxels of this map. The unknown voxels are assigned confidence level 0.

This is described in greater detail in Section 9.2.

. The Sphere-Based-Map-Generator creates a Sphere-Based-Map from the

Voxel-Based-Map. It assigns spheres around voxels and groups of voxels.

140

5. The C-space-Generator uses the Sphere-Based-Map and templates corre-
sponding to spheres to quickly generate a C-space map using the template

method.

The system also contains a path-planner which is incorporated whenever
modules like Approach, or higher-level commands fail to bring the robot to
certain positions. This path-planner is applied in configuration space and
described in Section 7.6.

Another module which is important to the system is the reflexive command
filter. The reflexive command filter prevents any of the modules, or higher-
level commands from executing commands which would lead to collisions with
obstacles described in the last updated C-space map.

An overview of the different modules, as virtual sensor, active component
pairs, and the relationship between the modules is given in Figure 9.2. An
overview of the system showing the order of activation of the behavioral mod-

ules is given in Figure 9.3.

9.2 Confidence Levels for World Exploration

Guidance

The system described above will explore the robots workspace and create a

world map containing a rough map of all obstacles. The world exploration

141

Sensor -1 nter pretor

Echo . Beam Inconsistency||
Interpreter Locator [" |Determinator
) Intern.

I Sensors

Resolvers

Higher-L evel-Commands

, 'y !

L ook-Path L ook-Around Beam-At
Task? No Task?| Inconsis-
Joint-5-6 Earli Robot & tencies Joint-5-6

Future 1 position arlier j—sTool Invess ["]Position
L ocation Sweeps Position

tigate?

Y Temtyor ary
Approach Investigate Map

Temporary Beam-At Robot & Inconsis- Series of]

. i Robot &
Map———||Inconsis- || Tool tencies | | Tool Long-Term

tencies Position Maps s M
Position ap

Tnitial Temporary
Sensor -I nter pretor N”'t'.) Temporary Map

—_— —

avigation ™| Map-Generator

M ap-Generator

Long-Term
Voxel-Based Spher e-Based C-space Maps
M ap-Generator M ap-Generator Generator >

Temporary
Map—»

Figure 9.2: The sensor interpreting modules, the world guidance modules, and
the map building modules are all connected to each other. The world guidance
modules are behavioral modules, and are displayed as virtual sensor and active
component pairs.

system will not attempt to reexamine an already mapped obstacle. However,
we would like the system to continuously improve the obstacle maps, and also
be able to include obstacles introduced into the robot’s work space after the
world exploration started. To achieve this goal the obstacles in the Voxel-
Based-Map are ranked in confidence levels.

The obstacle maps corresponding to the found inconsistencies are ranked
in “confidence levels” 0—255. The confidence level measures how well a found
obstacle has been investigated. If an obstacle has been thoroughly investigated

it will have a high confidence level, and its form, size and position will be well

142

[Sensor Data & Map |

Geometric
Path-Planner for
Assistance

A /

L ook-
Around

Beam At |=Approach»

Sensor
Data,
Confidence]
level &
[Task
Pending

!
Goto Start

[Sensor Data & Map |

[remmacomarie

‘ To Robot

Figure 9.3: An overview of the sonar-based world mapping system. The fixed
action patterns are displayed in gray and reflexes in dark gray.

known. If an obstacle has not been thoroughly investigated it will have a
low confidence level and its map will be a conservative approximation of the
obstacle. The confidence level is increased by subsequent investigations or
more thorough investigations.

The use of confidence levels allows the robot to continuously investigate
its environment and improve its world map. While the robot is executing a
task it only performs minimal world exploration, assigning a low confidence
level to the found obstacles, and when the robot is free it will continuously
keep perfecting its world map and increase the confidence levels of the found

inconsistencies.

143

A previously found and investigated inconsistency will be placed in the
Voxel-Based-Map, assigned a confidence level, and will thereafter not be con-
sidered an inconsistency, if its confidence level is higher than the “confidence
threshold level”. This way the corresponding obstacle will be ignored with
respect to further inspection. The confidence threshold level is a global con-
fidence level measurement, which corresponds to the overall “trust” in the
Voxel-Based-Map. If an obstacle has a confidence level which is equal or
larger than the confidence threshold level it will be further ignored with re-
spect to inspection. An obstacle which has a confidence level which is less
than the confidence threshold level will be investigated by the system until
its confidence level equals the confidence threshold level. An exception from
this rule is the case where an obstacle is found during a task execution. In
this case the investigation is halted before the confidence level has reached the
confidence threshold level, and would therefore easily be resumed when the
task is completed.

When all work-space has been investigated the confidence threshold level is
raised, and earlier found inconsistencies will be reconsidered for investigation
and more thoroughly investigated. Totally unexplored space has a confidence
level of 0, and completely known premapped obstacles have a confidence level
of 255. In Figure 9.4 an obstacle is considered an inconsistency demanding

immediate further investigation if its confidence level is less than 10.

144

Figure 9.4 shows sonar sensors located at a few different locations. The
sonar sensors are displayed as black circles. Obstacles with a confidence level
equal or higher than the confidence threshold level will not be considered to be
inconsistencies and will be ignored with respect to investigation. Beams reg-
istering an inconsistency are shown in gray, and beams registering an obstacle
which is not considered to be an inconsistency are displayed in white. When
an inconsistency is found, the areas of the work-space where the inconsistency

seems to be located are set to a certain confidence level.

Confidence Threshold Level = 10

B. |255 A
s &
D
Ll nconsistency
0 found
Tnconsistency /
found Sonar -Sensor s

Figure 9.4: Obstacle A was discovered while the robot was completing a task
and was therefore only briefly investigated. Obstacle B is a static premapped
obstacle, obstacle C an obstacle that has been investigated, and D a recently
found obstacle located in unexplored space.

9.3 Conclusions and Overview for Chapter 9

In summary, the sonar-based world mapping system consists of,

145

1. Sensor interpretation modules, which are used for map generation, and
as components of the virtual sensors of the world exploration guidance

modules.

2. World exploration guidance modules which control the exploration motion

pattern of the system.

3. A Halt-reflex which halts the robot to allow the world exploration guid-
ance modules to properly pre-examine anticipated obstacles in an un-

known environment.

4. A geometric path planner which is used to help the world exploration

guidance modules to complete motion impaired by known obstacles.

5. A reflexive command filter which protects the robot from collisions with

known obstacles.

6. Map generators which take the output from the inconsistency determina-

tor, or “lower level maps” as inputs.

The most central modules of the sonar-based world exploration system are the
world exploration guidance modules, which create all of the central motion
control for the robot. These modules are, in concept, similar to biological fixed
action patterns. Fixed action patterns are low-level behaviors, that generate

responses that could be seen as extended reflexive behaviors.

146

“Investigate” is the most complex of the five world exploration guidance
modules. It is inhibited at different confidence levels depending on whether
the system has a task to complete or not. The motivation behind this is that,
if the robot has a task to perform, it is more important to complete that task
than it is to thoroughly explore the inconsistency. In this case the investigation
will end at an earlier stage.

When the work-space is totally unexplored and little is known about the
obstacles in its environment, we would rather find out something about as
many obstacles as possible. In this case the confidence threshold level is low
or zero, and the investigation will attempt to cover all obstacles found. Once
the confidence threshold level is raised, all obstacles will be reinvestigated so
that the overall map can be improved. If entirely new obstacles are found
when the confidence threshold level already is high these obstacles will be
thoroughly investigated before the rest of the map is improved.

The interaction between the world exploration guidance modules, the con-
fidence threshold level, and the Voxel-Based-Map, creates all the necessary
robot motion in sonar-based world mapping system. No central planning is
needed. Because of this fact the system is flexible with respect to the con-
flicting objectives of completing a task, moving safely in unknown space, and
continuously updating the work-space map. The system is further robust, and

it allows for modular and incremental design.

147

The system was implemented on the RRC robot mentioned above. The
robot systematically investigated obstacles in its environment without having
explicit information about how to do this. The exploration was guided by
the obstacles and the order in which the obstacles were found. The robot
was able to perform tasks while exploring its environment. Due to specular
reflections, flat surfaces were sometimes difficult to detect. Thus, this system

is not guaranteed to detect all obstacles.

Chapter 10

Stability and Performance of Reflexive and

Behavioral Modules

In this chapter I will discuss various concepts regarding stability, convergence,
cycling, and performance in the context of reflexive or behavioral modules.
Stability and performance analysis of reflex modules and behavioral modules

for robotic systems is difficult for several reasons.

1. Robotic systems are very complex. They are multi-dimensional, highly
nonlinear, usually unknown to a certain extent, and they often include

several complex modules.

2. Reflexive and behavioral modules cannot always be described by a set of

differential equations.

3. Common concepts for stability, convergence etc., do not apply. For exam-
ple, stability in a Lyapunov sense, might not be a desirable feature. We
might want the robot to complete a series of tasks before settling down at

an equilibrium point, independent of where we start. Further, we might

148

149

want the robot to achieve a goal which cannot be expressed as a single

robot state, or maybe not even as a set of robot states.

Systems which can be expressed in the following form are referred to as

hierarchical systems:

7 (t) = Alt,z(t)],

Zgg(t) - f2[t7 xl(t)v :E?(t)]v

(10.1)

—

;.gl(t) = fl[ta .Tl(t), T 7xl(t)]7

An example of a stability theorem which applies to hierarchical systems is the
theorem given in [73, 31]. In short this theorem states that if all f;[t, zq(t), -, 2(t)]
are continuous and bounded, and have continuous and bounded partial deriva-

tives, and all isolated subsystems

- —

7= filt,0,---,0,7(1)]

are uniformly asymptotically stable, than the hierarchical system itself is uni-
formly asymptotically stable. The reason this theorem is not entirely applica-
ble to hierachical behavioral systems is that, it is extremely difficult to express
the function of behavioral modules as differential equations. It should also
be noted that this theorem is not applicable to systems containing feedback

loops.

150

One of the most general theorems concerning limit cycles is Bendixon’s
theorem given in [69]. Bendixon’s theorem states that for second order au-
tonomous system, i.e. #; = fi(z1,23) and @2 = fy(z1,x2), no limit cycle can
exist in a region () of the phase plane in which % + % does not vanish and
does not change sign. This theorem is not useful in the context of robotics and
especially behavioral robot architectures. The reason is it only applies to two
dimensional systems. It should also be noted that the type of cycling problems
that appear in reflexive systems are usually not limit cycles. They might re-
sult from quasi-periodic motion (surface in phase-space), hyper-quasi-periodic
motion, strange attractors (fractal set in phase space), multiple or time de-
pendent local minimum, or other non-linear or chaotic phenomena. This is
described in greater detail in [53].

Despite the lack of methods applicable to complex behavioral systems, anal-
ysis is not impossible. A system which is extremely complex, not possible to
express as a differential equation, or even unpredictable to a certain degree,
can many times still be analyzed with respect to performance. However, it
is very difficult to develop a general performance criteria, or an all-purpose
analysis, considering that the concept of reflexes and behavioral modules are

not well defined in a control sense. Further, what we expect from the different

modules might be very different things.

151

Non-linear control analysis is often applied to special cases of non-linear

systems, like:

1. Systems which can be described with explicit non-linear differential equa-

tions 7 = (t,Z(1),d(t)), or ¥ = f(Z,4) = f(Z) if the system is au-

tonomous.

2. Systems which can be associated with Lyapunov functions. It should be
noted that it often is possible to associate a system with a Lyapunov func-

tion without explicit knowledge about the system’s differential equations.
3. Systems which can be associated with multiple Lyapunov functions.
4. Systems to which invariant set theorems applies.

5. Systems which can be described as passive or active.

In the same way I will in this chapter describe a few methods for stability
and performance analysis of single-module and multiple-module reflexive and
behavioral systems. I will not present a general performance measurement
method. First I will review common stability concepts which apply to real-
time single-module systems. By real-time control systems I refer to systems
where time matters. By non-real-time systems I refer to systems for which only
the sequence in which events take place matters. I will also discuss real-time
multiple-module systems and non-real-time multiple module systems.

To summarize the content of this chapter:

152

1. In Section 10.1 I will review common stability concepts, and methods,
like stability in the sense of Lyapunov, Lyapunov functions, invariant set
theorems, hierarchical system theorems, and cycling. I will discuss these
methods in the context of reflexive and behavioral systems. In particular,
the Local Invariant Set Theorem turns out to be useful in the context of

reflexes and behavioral systems.

2. In Section 10.2.1 T will discuss the concept of command-tolerant stability.
This concept is introduced to justify analysis of individual modules in
a system of hierarchical modules, for which the feedback loop is either
non-existent, or can be ignored under certain circumstances. I will show
that a system which consists of a module A generating a stable output
to a command-tolerant stable module B, will be stable. An example of
such a system is shown in Figure 10.4. In the case of linear systems, a
system consisting of two stable modules, A and B, which are connected
in cascade without feedback, is stable. This result cannot be generalized
to arbitrary non-linear systems without the concept of command-tolerant

stability.

3. In Section 10.3 I will discuss the use of Lyapunov functions for reflexes and
behavioral modules. Instead of using actual robot state vectors, I will use
“commanded state vectors”, or vectors corresponding to the output from

higher-level modules. I will present a stability and convergence analysis

153

for the reflexive command filter utilizing Lyapunov functions applied in a
space spanning the output of higher-level modules. In this section I will

also discuss interacting modules, applying multiple Lyapunov functions.

. In Section 10.4 T will discuss the use of the Local Set-Invariant Theorem
for the purpose of reflexes. I will further introduce a concept I refer to as
Quasi Lagrange stability. This concept can be seen as an extension of the
concept of Lyapunov stability, or a variation of the Local Set-Invariant
Theorem. Quasi Lagrange stability is a concept tailored specifically for
the reflexes and other systems which purpose is to reach a prescribed
region of state-space. A stability and convergence analysis for the flee

reflexes is also presented.

. In Section 10.5 I will introduce a stability concept for non-real time multi-
modular interaction, in the case of simple-containment and triggered-
containment reflexes. Due to the well-defined characteristics of simple-

containment and triggered-containment reflexes, this is an exact concept.

. In Section 10.6 T will discuss progress measurement functions, which is
a very general, but harder to use concept for multi-modular arbitrary

behavioral systems.

. Finally in Section 10.7 T will give a brief overview of the results and

conclusions derived in this chapter.

154

10.1 Common Stability, Cycling, and Con-

vergence Concepts
Equilibrium points are defined as follows [69].

Definition 10.1 A state & is an equilibrium state (or equilibrium point) of

the system if once T(t) is equal to ¥, it remains equal to ¥ for all future times.
Stability (in the Lyapunov sense) is defined as follows [69].

Definition 10.2 The equilibrium state & = 0 is said to be stable if, for any
R > 0, there exist r > 0, such that if ||Z(0)|| < r, then ||Z(t)|| < R for all
t > 0. Otherwise, the equilibrium point is unstable.

or in a more compact form :
VR>0,3r>0:||Z(0)]| <r=||Z(t)]| < R,Vt>0

Instead of picking the equilibrium state & = 0 we can pick the equilibrium
state to be something arbitrary, ¥ = Z.,. In this case Definition 10.2 is written

the following way.

Definition 10.3 The equilibrium state ¥ = ., ts said to be stable if, for any
R > 0, there exist r > 0, such that if ||Z(0) — @y|| <, then ||Z(t) — Ze]| < R
for all t > 0. Otherwise, the equilibrium point s unstable.

or in a more compact form :

135

VR>0,3r > 0:|Z(0) = Tl <7 = ||F(t) — Zegl| < R,VE>0

It should be noted that in the most general case ¥(t) = Z.,(t) corrsponds
to an equilibrium point. This is, for example, the case in context of error
dynamics. I will not consider error dynamics in this thesis. For simplicity,
all equilibrium states will be assumed to be ¥ = 0 in the remainder of this
chapter.

Essentially, stability means that the system trajectory can be kept arbi-
trarily close to the origin by starting sufficiently close to it. Instability either
means that the system “blows up” or cannot be kept within an arbitrarily
small volume including the origin.

When using Definition 10.2 in the context of servo-controllers, it is usually
assumed that the servo-controller command, or the servo-controller input is
static. In other words, when showing stability with respect to an equilibrium
point, it is assumed that the input vector ¢ in T = f(a_c',) is time invariant.
In fact, for arbitrary time-dependent input vectors w(t), stability with respect
to an equilibrium point 0 would be an undesirable property. If this were the
case the system would always stay close to the equilibrium point no matter
what input @(¢) is given to the system. This is certainly not what we want

from a robot servo-controller.

156

To explicitly state the static input criteria for servo controllers, we could

rewrite Definition 10.2 as follows:
Definition 10.4 The equilibrium state T = 0 is said to be stable if,
VYR > 0,3r > 0 : @yervo = 0, ||Z(0)]| < r = ||Z(1)|| < R,¥t >0
Where tiseryo is the servo-controller input vector.

In other words, we wish the servo-controller to take the robot to a state ¥ =
0 (position zero, velocity zero), which also is an equilibrium point. Further,
the state © = 0 is an equilibrium point for the system under the condition
that the desired robot state is £ = 0. This may seem odd in the context of
arbitrary systems. However, it is commonly what is wanted in the context of
servo-controllers.

It should be noted that this definition is a special case of Definition 10.1.
Sometimes the input state vector to the servo-controller does not correspond
to the position where the system comes to rest, and still the system behaves in
an intuitively stable manner. Gravity can for example make a servo-controller
unable to bring the robot to the desired goal. However, the robot still comes
to rest at a point different from the desired position. This system is certainly

unstable in a Lyapunov sense if we choose our equilibrium point to be equal

to our desired state. However, if we instead chose the final rest point as our

157

equilibrium point it might be possible to show that our system is stable in a

Lyapunov sense. To address this, Definition 10.4 can be generalized as follows:
Definition 10.5 The equilibrium state T = 0 is said to be stable if,
VR > 0,3r > 0: Uservo = Ustatic, ||T(0)]| < r = ||Z(t)]| < R,¥t >0

Where tseryo is the servo-controller input vector, and Usqs. s a static vec-
-
tor. The equilibrium point is chosen as 0 for conventence, even though this

point might correspond to an undesirable configuration.

The definition for convergence and asymptotic stability is as follows:

Definition 10.6 A system is convergent to 0 if limym e Z(t) = 0.

Definition 10.7 An equilibrium point6 is asymptotically stable if it is stable,
and if in addition there exists some r > 0 such that |Z(0)|| < r, implies that
limis o 7(1) = 0. In other words, an equilibrium point is asymptotically stable

if, it is stable and the system is convergent to the equilibrium point.

With respect to definition 10.7, the region B, is referred to as the domain of

attraction. The region or ball the B, is defined as follows:

Definition 10.8 The region B, or the ball B,, is the region in state space for

which ||Z]| < r.

Stability with respect to an equilibrium point in the sense of Lyapunov is

often proved or discussed using the following theorem given in [69]:

158

Theorem 10.1 (Local Stability) If, in the state-space ball Br, there exists

a scalar function V with continuous first partial derivatives such that

1. V(&) ts positive-definite (locally in Bg)

2. V(i"') is negative-semi-definite (locally in Bgr).

then the equilibrium point 0 is locally stable. If, actually, the time derivative
V(:E') is locally negative-definite in Br, then the stability s asymptotic. The

scalar function V is said to be a Lyapunov function.

The proof of this theorem is given in [69]. Figure 10.1 illustrates a Lyapunov
function and the corresponding Lyapunov function equipotential curves.

The concept of stability with respect to an equilibrium point is sometimes
useful in the context of behavioral systems. When this is the case, we can use
Lyapunov functions applied either in the robot’s state-space, or to the output
of higher-level modules.

Asymptotic stability of a system is also an important property to determine.
However, the equilibrium point theorems are often difficult to apply in order
to assert this property. The reason is that it often happens that Y is only
negative-semi-definite.

Another common problem with the concept of equilibrium point stability,
in the context of reflexive and behavioral systems, is that it often is that the

robot converges to a subset of the state-space rather than a specific point.

159

\Y/
X2
V
X1

X(t)

14Xy,
v,

ﬁ Q X1

\2

Vi

M<V,<\ <\,
Figure 10.1: This Figure illustrates a Lyapunov function for a two dimen-
sional system. The equipotential curves of the Lyapunov functions are also
illustrated.
This is, for example, the case for the flee reflexes. This particular example will
be described in greater detail in Section 10.4.

To take care of these kinds of situations we can use invariant set theorems,
which are a set of powerful theorems attributed to LaSalle. The central concept
in these theorems is that of the invariant set, a generalization of the concept
of an equilibrium point. In [42] LaSalle refers to stability with respect to a

subset of the state-space where V is constant and thus Y = 0, as “stability in

the sense of Lagrange”. Stability in the sense of Lagrange is also discussed in

[31).

160

Definition 10.9 A set G is an invariant set for a dynamic system if every

system trajectory which starts from a point G remains in G for all future time.

The local invariant set theorem below is given, further explained, and
proved in [69]:
Theorem 10.2 Local Invariant Set Theorem Consider an autonomous

system described by ¥ = (Z), with]? continuous, and let V(Z) be a scalar

function with continuous first partial derivatives. Assume that

o for some l > 0, the region O defined by V(&) < I is bounded.

. V(:E') <0 for all ¥ in €.

Let R be the set of all points within Q; where V(a_c') =0, and M be the union
of all invariant sets in R. Then, every solution Z(t) originating in tends

to M as limy— o

It should be noted that if R is itself invariant (i.e., if once Y = 0, then
Y = 0 for all future time), then M = R. The geometrical meaning of this
theorem is illustrated in Figure 10.2, where a trajectory starting from within
the bounded region €); is seen to converge to the union of all invariant sets M.
Note that the set R is not necessarily connected, nor is the set M. Figure 10.3
demonstrates an M consisting of one equilibrium point and one limit cycle.

In Figure 10.3 a trajectory can enter and leave the set R, and converge to the

161

limit cycle (which is a subset of R and M). A trajectory can also start inside

the cavity, below the limit cycle and converge to the equilbrium point (which

is a subset of R and M).

V:l AV

Q RcQ, McRc(Q,

Figure 10.2: Convergence to the union of all invariant sets M. V is constant
in the R region which means that ¥V = 0 for arbitrary trajectories. If V is not
constant everywhere in R, it must be the case that only certain trajectories
within R for which V is constant are possible.

A partial proof of this theorem is given in [69], and consists of two steps.
The first part of the proof is to show that Y goes to zero, in other words R.
The second part of the proof is to show that any bounded trajectory within R

must converge to an invariant set. This invariant set might be an equilibrium

point, among many equilibrium points, a limit cycle, etc..

162

Q RcQ, McRcQ,

Figure 10.3: In the case illustrated here the paths will take the robot across
the region R and finally to the cavity inside R. In this cavity V < 0, except
at the limit cycle and the minimum in the center.

It should be noted that the asymptotic stability result in the local Lyapunov
theorem can be viewed as a special case of the above invariant set theorem,
where the set M consists only of the origin.

This concept is quite useful in, for example, in the case of the flee reflexes.
Consider the system consisting of the reflexive command filter, and the wall-
emulating flee reflex. The reflexive command filter guarantees, under static
conditions (the wall not approaching), that the robot will stay within the free
space if it already is there. For this reason the free-space corresponds to our
invariant set. Further, if the robot is intersecting a wall, the flee reflex will

drive the robot into the invariant set (free-space). To show this, we can use the

163

flee potential as our function V. When the flee reflex guarantees that Y =0
in free space and Y <0 elsewhere, all trajectories converge to the invariant
set free-space according to the local invariant set theorem. In the case of the
block-emulating flee reflex, the invariant set consists of the intersection of the
free-space and the space where the flee potential is zero. It should be noted
that the region where the flee potential is zero is a subset of the free-space.
These two cases will be discussed in greater detail in Section 10.4.1.

It should be noted that in some cases the desired goal state for an individual
module cannot be expressed as a subset of either the state-space or as a subset
of possible higher-level module output vectors. Further, the concept of stability
and convergence might in some cases not even have an intuitive meaning, nor
be what we desire from the system. To handle these kinds of situations we
have to resort to other types of performance measurement methods. We also
need to distinguish between “real time” control applications, and purely logical
performance measurement methods.

In the remainder of this chapter I will discuss Lyapunov functions applied
to the output of higher-level modules, the use of the invariant set theorem and
similar definitions, and finally introduce new specialized performance measure-
ments. [will also discuss stability, convergence, and performance measurement

methods in the context of interacting modules.

164

10.2 The Concept of Command-Tolerant and

Monotonic Stability.

In this section the concepts of “command-tolerant stability” and “monotonic-
in/monotonic-out stability” is introduced. The purpose behind introducing
the concept of “command-tolerant stability” is to validate the use of Lya-
punov functions for the output vectors of higher-level modules, which will be
described in Section 10.3. The concept of “monotonic-in/monotonic-out sta-
bility” is a more specific but closely related concept. It is introduced for the
purpose of analysis of the reflexive command filter and other similar reflex

modules.

10.2.1 The Concept of Command-Tolerant Stability.

A system consists of two modules, A and B, which are connected in cascade.
Module A generates an output which is stable with respect to the equilib-
rium point ¥4 ., (in Lyapunov sense). Module B is the servo-controller /robot
module. The output of module A (¥4) is the input to module B (i#g). The
resulting system is illustrated in Figure 10.4.

If module B also generates a stable output, assuming a fixed input @p fized,
it is natural to assume that the system is stable. For real systems with prac-

tical servo-controllers this is true. An example of this situation would be

165

the following. An operator A gives the robot system B a position command
Ty =1 = 0. The robot converges in a stable manner to the position ¥g = 0.
In other words, module B (the robot system) is stable assuming a fixed com-
mand @ = 0. A higher-level system A’ gives the robot system B a command
which corresponds to a trajectory converging to 0 in a stable manner. In this
situation we still expect the robot system to converge to ¥ = 0 in a stable
manner. This will be referred to as “command-tolerant stability”. If the robot
system does not converge in the latter case, module B is not command-tolerant
stable.

With the output from module A “behaving stable” with respect to the
equilibrium point Z4 ., is meant that the output signal will always stay within
|Za(t) — Za,e4|| < R, where R can be chosen arbitrarily, if the output signal

initially is less than r (||Z4(0) — T4l < 7.

Definition 10.10 The equilibrium state ¥ = 0 is said to be command-tolerant
stable if, for any R > 0, there exists an € > 0, and there exists anr > 0, such
that if ||u(t) — tey|| < € for allt > 0, where i., is the desired input vector, and

|Z(0)]| < r, then ||Z(t)|| < R for all t > 0. or in a more compact form,

VR >0,3e>0,3r > 0: (Ju(t)—tel <eVEt>0),]Z0)|] <r=||Z(t)|] < R,¥t>0

With respect to the example, command-tolerant stability means that, if the

input wp is stable with respect to the equilibrium point .,, then the output

166

A Higher L evel

M odule
Xao= Upg Xa (Stable)
up
\4
B [Transformer|

? X servo_r eq_ XB

Servo Controller

cmd

Robot

v Xg (Stable)

Figure 10.4: Module A is generating an output to the servo-controller which
is stable with respect to an equilibrium point. Module B, which consists of
the robot and the servo-controller, generates a stable output if either given a
static input, or a variable input which is stable with respect to an equilibrium
point.

g is stable with respect to the equilibrium point 0. This should be seen in
contrast to assuming a static input when showing stability for a module. This
is a very reasonable criterion for a stable servo-controller. In fact a servo-
controller which is not command-tolerant stable is useless for robotic systems.
It should be noted that both Definition 10.10 and 10.4 are special cases of
Definition 10.2.

It should be noted that @g, and u., might be vectors which correspond to

167

desired robot state vectors (e.g. they are velocity and position commands).
This is commonly the case for servo-controllers. However, this does not have
to be the case. For example, if the servo-controller includes a trajectory gen-
erator, iig could correspond to a tool position in the work space.

Using Definition 10.10 allows us to analyze modules in a hierarchical system
individually, and draw conclusions about the stability of the entire system, as
long as there are no feedback loops, or the feedback loops can be ignored®.

What we intend to show in this section is that a system which consists of

the following two modules,

o A, which generates an output which behaves stable with respect to an

equilibrium point #.,, and
e B, which is command-tolerant stable with respect to the equilibrium point
0.
is stable with respect to the equilibrium point 02.

Theorem 10.3 [f the higher-level control output, or in other words, the servo-
controller input vector, can be shown to be stable in a Lyapunov sense, and
the servo-controller/robot module is command-tolerant stable, then the entire

system is stable in a Lyapunov sense.

I'This is a generalization of the fact that, for the special case of linear systems, two stable
modules in cascade constitutes a Lyapunov stable system.
2In a Lyapunov sense

168

This is true by definition. However, it is possible to present a proof which

is based on the formal definition.

Proof Assume the following:

1. For any a > 0, there exists v > 0, such that if ||@(0) — @,|| < 7, then
||ti(t) — Uey|| < o for all t > 0. In other words assume the higher-level

module generates a stable input to the servo controller.

2. The servo controller is command-tolerant stable, i.e.,

VR > 0,3e>0,3r > 0: (|u(t)—t.,| <eVt>0),||Z(0)] <r=|Z(t)] < R,¥Vt>0

When € is defined by modules external to the servo controller, it is the
only entity in the definition for command stability which cannot be picked
arbitrarily. However, from (1) we can pick a > 0 arbitrarily, particularly the
a = erequired for (2) to be fulfilled. Assuming we always can pick the required

€ > 0, (2) can be rewritten as,
VR >0,3r >0:|Z(0)] <r=||Z(t)] < R,Vt >0

and thus we have shown that, assuming the servo-controller input @(¢) acts
stable, the entire system is stable. a

Observe that the command-tolerant stability theorem can be used in cas-
cade, so that if all modules can be assumed to be command-tolerant stable,

we only need to show the stability of the input to the highest-level module.

169

For the robotic systems considered here, the input vector usually consists
of a set of position commands and a zero velocity vector. In these cases, it is
only necessary to show that the position commands generated by higher-level
controls to the servo-controller are stable.

The analysis of the reflexive systems with respect to convergence and asymp-
totic stability becomes considerably easier if we use the concept of a command-
tolerant convergent module and assume a “command-tolerant asymptotically
stable” servo-controller. T will define “command-tolerant convergence” as fol-

lows :

Definition 10.11 A module is locally command-tolerant convergent if
there exists some r > 0 such that |Z(0)|| < r, and limiss (1) = ey, implies

that limyo. Z(t) =0

I further will define “local command-tolerant asymptotic stability” as fol-

lows :

Definition 10.12 An equilibrium pointﬁ is locally command-tolerant asymp-
totically stable if it is command-tolerant stable, and if in addition there ex-
ists some r > 0 such that ||Z(0)| < r, and liMime @ = ey, implies that
limiseo (1) = 0. In other words, an equilibrium point is command-tolerant
asymptotically stable if it is command-tolerant stable and command-tolerant

convergent.

170

10.2.2 The Concept of Monotonic-In/Monotonic-Out
Stability.

That a system output or state vector, or an arbitrary signal is monotonically

approaching a point is defined as follows:

Definition 10.13 A system output/input or a signal Z(t) monotonically ap-

proaches an point Tey if ||T(1) — Tey|| < || F(E — 6t) — Zoy||, ¥Vt > 0,6 > 0.

The point 7., could be an equilibrium point for the system, in other words

once Z(t) = &, it will remain there.

Definition 10.14 An equilibrium point T., is said to be monotonically stable
in the region) if the corresponding system output or state space vector at all

times monotonically approaches the equilibrium point everywhere in the region

Q.

It should be noted that monotonic stability also means stability in the sense
of Lyapunov.

Monotonic-In/Monotonic-out stability is defined as follows:

Definition 10.15 The equilibrium pointﬁ is said to be monotonic-in/monotonic-
out stable if the fact that the input vector ||i(t)|| is monotonically approaching
a point U.,, implies that the output state vector monotonically approaches the

equilibrium point 0. In other words if,

(1) —ileq|| < |[E(t—6t)—ihuy||, VE > 0,¥6t > 0 = ||Z(t)]| < [|Z(t—6t)||VE > 0,¥6t > 0

171

then the system is monotonic-in/monotonic-out stable.

It should be noted that monotonic-in/monotonic-out stability is a very strict
demand which might be hard to prove. However, in section 10.3.1 it is shown
that the reflexive command filter is monotonic-in/monotonic-out stable. Fur-
ther, what is referred to as a non-overshooting servo-controller in sections
5.4 and 10.3.1 is another example of a monotonic-in/monotonic-out stable
module?.

A non-overshooting servo-controller is a servo-controller, which for all po-
sition commands, generates paths which monotonically converge towards the
desired joint positions, if given from a zero initial velocity. In other words,
assuming that the servo-controller-robot module has settled, a new monoton-
ically converging input will result in the servo-controller-robot module mono-
tonically converging to the new goal. A non-overshooting servo-controller will
“overshoot” if, for example, it receives a position command located in the
opposite direction of where it it is going. Examples of non-overshooting servo-
controllers are soft (over- or critically-damped) PD-controllers, bang-bang, and
sliding-mode-controllers.

The following theorem regarding monotonic stability is very useful for ex-

ample, in the case of the reflexive command filter. The theorem refers to

Figure 10.5.

3At least in the way they are used in the context of reflexive obstacle avoidance

172

U
kgx(t- At) Module A

M onotonic-In/Monotonic-Out
Stable

XA
Ug

Ke
x(t-JAt) [Module B
At

Monotonic-1n/Monotonic-Out
Stable

| Xg

(k, positve or negative)

Figure 10.5: Two monotonic-in/monotonic-out stable modules connected via
a feedback loop.

Theorem 10.4 A system consists of two modules A and B connected to each

other via a feedback loop with an arbitrary time-delay At > 0. If,

o All signals in the system are either continuous, or have a finite number

of discontinuities.
e module A is monotonic-in/monotonic-out stable,
e module B is monotonic-in/monotonic-out stable,

o the input to A corresponding to the feedback loop is considered a part of

the input vector to the module A,

e and any additional input to the module A is either constant, or monoton-

ically approaching a certain input state,

173

the system consisting of module A and B, including the feedback loop is monotonic-

in/monotonic-out stable.

Proof With respect to Figure 10.5 the input vector to A is w4(t) =
(kpZp(t — At),u;(t)), where kg can be a negative or positive non-zero con-
stant. The point the input is supposed to approach in this case is (6, Ufeq)-
Assume that the system consisting of module A and B, including the feedback
loop is not monotonic-in/monotonic-out stable. This means that ||Zp(%)|| the
normal of the system state vector at some time ¢ is increasing. Assume that
|ZB(1)]| increases for the first time at a time ¢ > A¢. This means that at some
time ¢ > At and for some 6t < At, ||ip(t — 6t)|| > ||@p(t)||. That this is true
for some 6t < At follows from the fact that if, all signals are continuous, or
have a finite number of discontinuities, then ||ig(t — 6t)|| > ||@p(¢)|| for some
t and 6t implies that ||@g(ty — 6t2)|| > ||@p(t2)]| for some t5 and §ts, where 6ty
can be chosen arbitrarily small.

Module B is monotonic-in/monotonic-out stable which means that if, ||@p(t—
ot)|| > ||us(t)| then HUA(t/ — 5t!)]| > HUA(t/)H for some ¢ < ¢ and some
6t < At. However, module A is also monotonic-in/monotonic-out stable
which means that if, HJA(t/—&!)H > HUA(t!)H then HkB(:i'B(t”—At),Ul(t”))H >
HkB(:E'B(t" — At — 5t”), ﬁl(t” — 6t”))H for some t” < ¢ and some §t" < At. In

other words H:i'B(t” — At)|| > H:i'B(t” — At — 5t")H for some ¢ <t and some

174

§t" < At. This follows from the fact that #(t)) is assumed to be monotoni-
cally approaching @y .., and kgZp(t— At) and thus Zg(t — At) is monotonically
approaching 0. However, |Z5(t" — At)|| > ||Fp(t" — At — 6|, t" <t <t
where 6" < At means that the original assumption that ||Zp(¢)|| increases for
the first time at a time t > At is violated.

Now assume that ||Zp(1)|| increases for the first time at a time ¢t < Af.
Initially assume that @4(0) = (kgZp(0),u(0)) where £5(0) = @5(0). For all
times ¢ < At the input to module A w4(t) is (kgZp(0),u;(t)) which is a signal
which monotonically approches (6, Uleq). In other words, it cannot be true
that |Zp(t)|| increases for the first time at a time ¢ < At, which means that it
never increases. In other words the entire system is monotonically stable. O

In the remainder of this chapter I will discuss stability, convergence and
cycling problems with respect to the position commands generated by the
reflexive and behavioral modules, and thus avoid dealing with the true state
vector including both the actual position and the actual velocity. When using
the command-tolerant stability theorem to show overall system stability, we
must be able to show that higher-level modules generate stable outputs.

However, whether the higher-level modules generate stable outputs or not
depends on the robot state. In other words the command-tolerant stability

theorem is not a method to entirely decouple modules in a hierarchical system.

Why it still is useful is due to the fact that we usually can predict the behavior

175

of higher-level behavioral modules without having precise knowledge about the
robot state vector. However, we usually have to assume that the robot state
vector is in a certain region of state-space to be able to predict the behavior
of the behavioral module. If we can do this, the modules in a hierarchical
system can be decoupled from each other using the command-tolerant stability

theorem.

10.3 The Use of Lyapunov Functions For Higher-

Level Modules

Stability analysis is commonly applied to servo-controllers. However, we would
like to extend stability analysis to the outputs of higher-level modules as well.
Examples of higher-level outputs are commanded state vectors (configurations
and velocities), sensor states, recorded data, or internal map states. To ob-
tain noted conclusions with respect to higher-level modules, the corresponding
Lyapunov functions must be chosen to reflect the progress in the output of the
module.

The inclusion of sensor data, map data, and other types of data in the state
vector, might allow what looks like cycling with respect to commanded joint
coordinates and velocities, although the system is making progress with respect

to higher-level goals. In this context it is important to choose a Lyapunov

176

function which depends on the entire output vector from the module.

An example is the following Lyapunov function for the reflexive command
filter: Vies—punr(Z5) = %Zﬁl Ko :i(%gesi — ®54)* where ¥, is the approved con-
figuration generated by the reflexive command filter, and 74, is the goal con-
figuration. It should be noted that the reflexive command filter attempts to
minimize the joint energies individually, which in our 4-D case can be ex-
pressed as the vector function: j;ef_fm(:i's) = %[Kl(:vdesJ — 251)% Ko(Tges 2 —
Ts52)?% K3(Taes3 — ©53)?, Ka(Tges,a — 5,4)%. The function corresponding to this
stricter energy criterion can be used to form a Lyapunov scalar function ac-
cording to Vyes—si(®si) = Tiref—fitr(®15) + Tapef—sir(@2,s) + T3 ref—sire(T3,s) +
TJaref—fiut(xas). Observe that these two Lyapunov scalar functions are the
same.

Another example of a Lyapunov function applied to a higher-level mod-
ule is the “energy measurement” given for the guiding potential functions
given in Section 7.2. For the configuration-space guiding potential function,
the Lyapunov function would be: Vyyid—pot(Zs) = % A K i(Taesi — 54)?%, in
other words the same as for the reflexive command filter. For the augmented
task-space potential function the Lyapunov function would be: V,yid—pot(Zs) =
% vazl Ky i(Ydesi — ys,i)* where 7.5 is an N-dimensional augmented task-space

goal and ¥ an N-dimensional augmented task-space command output from

the guiding potential function.

177

In Section 10.3.1 it will be shown that the Lyapunov function of the reflexive
command filter is positive-definite, and further its time derivate: Vref_filt(fs) =
_%(](1 (is,l(iﬂdes,l - 555,1)) -](2(is,2($des,2 - $s,2)) - [(3(5'55,3(55@5,3 - 13,3)) -
K4(254(Tges,a — 54))) is negative-definite or negative-semi-definite if the “de-
sired” joint velocities generated by the reflexive command filter i, are either
directed towards the joint goal, or zero.

It is also true that the Lyapunov function for the configuration-space guid-

1N

ing potential function: Gguig—pot(%s) = 5 2i0; Kei(Tdesi — Ts)

2 is positive-

definite, and further the time derivate: g.gmd_pot(:ns) = —% Zf\il Kepitsi(Tdesi—
Ts;) is negative-definite or semi-definite if, >N, Ky itsi(Thesi — xs;) > 0.

In the case of the block-emulating reflex, it is possible to define a Lyapunov
function for the startle and the retraction reflexes, due to the fact that the tra-
jectories are predetermined in each case. In these cases, the robot has to reach a
certain point, the equilibrium point, which is defined by the flee potentials and
the robot states at the time the flee reflex is turned on. For the startle reflex
the equilibrium point can be computed as 0;1 = —k,, tioff JINV Friee(z, y, 2)dt,
where qu is the equilibrium point, Fy.. the flee potential, to the time the

startle reflex is initialized and ¢,5; the time the startle reflex is turned off.

When JT and Fji.(z,y,z) depend on g(t) and (z(t),y(t), z(t)) respectively,

—

and t,55 depends on Fyre(z,y,2) and 0(t) this computation usually has to be

done numerically. For the retraction reflex, the equilibrium point would be

178

(9;1 = fti)"ff I ko V Free(,y, 2, 6)dt. Once the equilibrium points are known,
the Lyapunov function can be defined as a distance measurement to the equi-
librium point. However, it should be noted that this is an awkward way of

analyzing the flee reflexes. The invariant set theorems are superior in this case.

10.3.1 Stability and Convergence Analysis for the Re-

flexive Command Filter

It was shown in Chapter 5 that the reflexive command filter guarantees that
the robot will stay within a certain approved free-space prism. This is indeed
the primary objective of the reflexive command filter. However, this does not
guarantee that the system is stable. It is possible for the robot to be caught
in a limit cycle and still never leave the free-space prism. Assuming a stable
(command-tolerant stable) servo-controller and robot system and a position-
based reflexive command filter relying on a non-overshooting servo-controller,
it is also possible to show stability using Lyapunov functions. Or better, as-
suming a command-tolerant uniformly asymptotically stable servo-controller
and robot system it can be shown the combined servo-controller, robot and re-
flexive command filter system is command-tolerant uniformly asymptotically
stable, by showing that the reflexive command filter is command-tolerant uni-
formly asymptotically stable. In this section I will first give a thorough, but

tedious proof of the fact that the system consisting of the reflexive command

179

filter, a non-overshooting servo-controller/robot system, including the feed-
back loop to the reflexive command filter is stable. Next, I will explain why
the system is command-tolerant uniformly asymptotically stable.

An overview of the system anlyzed here is given in Figure 10.6. The feed-
back loop from the robot state to the C-space inspector is used by the C-space
inspector to guarantee that the approved free-space prism contains the current
position. In the case of a position-based reflexive command filter, the feed-
back loop from the robot state to the active command filter cannot affect the
performance of the system. The reason for this is that the approved position
command is a fixed point within the free-space prism which is independent of
the current robot state vector.

To show stability for the system shown in Figure 10.6 it is not necessary
to analyze the entire system consisting of the robot, the servo-controller, the
reflexive command filter, and all the feedback loops. The servo-controlled
robot system is assumed to be stable by itself, and the only feedback loop we
need to worry about is the feedback loop from the robot state to the Cspace
inspector.

The Lyapunov function in the case of the position-based reflexive command
filter is L,cs—sine(xs) = %Zﬁl K. i(Tges; —T5:)?, where Zs is the command out-
put from the reflexive filter, and the commanded input to the servo-controller.

Tges 1s the desired goal position, and the equilibrium point in this context.

180

Command

A 4

C-space Active
- SP | » | Command

| nspector Eilter
1

L 7

A 4

Servo-
Controller

A4

Robot

v Robot State

Figure 10.6: Overview of a system consisting of a reflexive command filter, a
servo controller and the robot.

We need to show that,

1. Lres—siur(Z5) is continuous, has continuous first partial derivatives, and is

positive-definite.
2. Elref_fm(fs) is negative-semi-definite.

independent of the feedback loop to the C-space inspector.

It is evident that L,.s_si:(Z5) is continuous, has continuous first partial
derivatives, and is positive-definite. The challenge lies in showing that /:Tef_fﬂt(fs)
is negative-semi-definite. To do this we need to examine the way the approved
position commands are generated by the reflexive command filter.

If the position request 4. is located inside the approved free-space prism,

181

it is approved. As a result, the output of the reflexive command filter would
remain constant at ¥, = Z4.; Correspondingly, /:Tef_ﬁlt(fs) = 0. This is true
independent of the current robot position, and thus true independent of the
feedback loop to the C-space inspector.

After the next execution cycle of the C-space inspector, the approved free-
space prism will be updated so that the position request either will lie within
the approved free-space prism, or at a fixed location at the face of the ap-
proved free-space prism. When the front-face of the approved free-space prism
is either identical to the front-face of the previous approved free-space prism,
or updated so that it is closer to the position request, then the approved
positions monotonically approach the requested position. In other words,
Zref_filt(f,s) < 0. This is also true independent of the current position, and
thus true independent of the feedback loop to the C-space inspector. It is
evident that, even though the feedback loop to the C-space inspector deter-
mines the size of the free-space prisms, this feedback loop can not influence
the stability of the output from the reflexive command filter, assuming a non-
overshooting servo controller and, assuming that the reflexive command filter
is functional.

Why the corner point closest to the position request in subsequent approved

free-space prisms monotonically approaches the position request has to do

with the way the C-space inspector searches C-space and generates free-space

182

prisms. The search begins at the borders of the previously approved free-space
prism, and is expanded into the new requested prism in a wave-like manner,
towards the requested position, as illustrated in Figure 5.5. This means that
if no obstacles are found, the corner point closest to the requested position
will get closer to the requested position. On the other hand if an obstacle is
found, the corner point will either remain the same or be updated so that it
gets closer to the position request along at least one joint.

To summarize these results, the approved position is either identical to
the requested position or on the face of the approved free space prism, and
therefore monotonically converges to the position request. This way both
criteria necessary for stability are fulfilled. Assuming a command-tolerant
stable servo-controller /robot pair, this means that the entire system is stable.
It should be noted that if there are obstacles in C-space we cannot guarantee
asymptotic stability when these obstacle could halt further progress.

In Section 10.2.1 it was shown that if two modules A and B are connected
to each other via a feedback loop with an arbitrary time-delay A¢ > 0, and
they both are monotonic-in/monotonic-out stable, the combined system is
monotonic-in/monotonic-out stable.

The reflexive command filter can be viewed as the module B with the

inputs:

1. The incoming desired position.

183

2. The current position.
Assuming that,
1. The desired position is fixed,

2. The current position is monotonically approaching a reference point (the

fixed desired position),

the reflexive command filter will generate a position command which is either
identical to the previous command, or is closer to the desired position than
the previous command was. This means that the reflexive command filter
is monotonic-in/monotonic-out stable. Assuming a monotonic-in/monotonic-
out stable servo-controller/robot system this means that the combined system

also is monotonic-in/monotonic-out stable, according to theorem 10.4.

10.3.2 The Use of Lyapunov Functions in the Case of
Interacting Modules

If we are using the configuration-space guiding potential function in conjunc-
tion with the reflexive command filter the combined system is guaranteed to
be stable in the sense of Lyapunov, if both modules are stable in the sense of
Lyapunov. The reason is that the same Lyapunov function can be used for
both the reflexive command filter and the configuration-space based guiding

potential function. That means that if the time derivative Lyapunov function

184

for the reflexive filter is negative-semi-definite, it is negative-semi-definite for
the guiding potential function. Even though the modules generate different
trajectories, these trajectories will always decrease the Lyapunov function for
both modules. No matter how much we switch among the modules, we are
always guaranteed stability. Further, if both modules monotonically decrease
the Lyapunov function (negative-definite), we are guaranteed convergence in-
dependent of which module is in control at any given time.

However, this is not true if, for example, we are using the augmented task-
space guiding potential function, or the work-space guiding potential function
in conjunction with the reflexive command filter. In this case Vguid_pot(t) corre-
sponding to the guiding potential function might be positive, while vref—filt(t>
corresponding to the reflexive filter is negative. This is a source of limit cycling
when it allows for states to be visited multiple times when switching control
modes.

If we are switching among modes of control which cannot be described with
the same Lyapunov function, we need to make sure that this switching does
not cause cycling. We may switch among a finite number of modes of control
associated with different Lyapunov functions?, and still guarantee no sustained

limit cycling, and stability provided:

Requirement 10.1

4 Associated with different Lyapunov functions not by accident, but with necessity.

185

1. Each module or mode can be associated with a positive-definite Lyapunov

function with a negative-definite or negative-semi-definite time derivative.
2. All modes of control are associated with the same equilibrium point.

3. The Lyapunov function of the mode to be switched in is lower than the

Lyapunov function of that mode when it was last switched out.

The first criterion guarantees that V(¢ 4+ 6t) < V(¢) during any specific
mode of control. The third criterion guarantees that we never visit any point
twice under the same control mode. The second criterion guarantees that there
exists a defined equilibrium point.

That a multi-modular system complying to requirement 10.1 is stable in
the sense of Lyapunov can be proved by defining a global Lyapunov function
which 1s valid for the entire system. Such a global Lyapunov function could be
the sum of all “system-compatible Lyapunov functions”. A system-compatible
Lyapunov function is a Lyapunov function which is identical to the original
one while the module is active, and otherwise replaced by a monotonically

decreasing function. An example of a system-compatible Lyapunov function

V/(t) = V(t) if the module is active, V/(t) = V(tnewt—switched—in) +
(%(V(tpreviously—switched—out) - V(tnext—switched—m))

(1 + COS('IT(t t_tpreviously—switched—out))))7 Otherwise

nezt—switched—in_tpreviously—switched—out

where 1, eviousiy—switched—out 1S time the module previously was active, and

186

tnert—switched—in 18 the time the module will become active again. It should
be noted that for ¢ > #1451 switched—outs, Where tiqi—switched—out 18 the last time
the module will be switched out from, ?¢,cpt—switched—in 18 undefined. In this
case V'(t) = V(tpreviously—switched—out) -

The corresponding global Lyapunov function would be:
GV(t) = V;(t) + S (Vilti newt—switched—in) +

(% (Vi(ti,previously—switched—out) - Vi(ti,ne:vt—switched—in))

(o cos (e e)))

where j corresponds to the currently active module, t; previousiy—switched—out 18
time module ¢ previously was active, and ¢; nept—switched—in the time module
¢ becomes active next. This Lyapunov function is continuous and positive-
definite, if all V;() are continuous and positive-definite, and its time derivative
is also continuous and negative-semi-definite if all Vz(t) are continuous and
negative-semi-definite and we comply to the rules above. This can be seen if
the differentiation is carried out.

Figure 10.7 illustrates three different Lyapunov functions Vi, Vs, V3 for three
different modules. The system consisting of these three modules complies
with the given rules. However, the individual modules might increase their
respective Lyapunov function while not active, so simply adding the Lyapunov

functions together will not necessarily give us a global Lyapunov function

which always is decreasing. Figure 10.7 also shows the V;,V,,V, functions

187

which are continuous, and monotonically decreasing, and therefore the sum of
V;,V,, Vs is a global Lyapunov function.
Vi,

vV,
Vi’

V, isactive V, isactive Vy isactive

t

V, I —

Vi
1 \\DV
\

V, isactive V, isactive Vi isactive

t

Figure 10.7: Three different Lyapunov functions for three different modules.
The system consisting of these modules complies with the requirement above.
Adding them together will not give a valid global Lyapunov function. However,
adding their system compatible Lyapunov functions V; will give a monotoni-
cally decreasing and continuous Lyapunov function.

A more elegant way to show this will be given next. In [10] Michael Branicky
proves a theorem which states the stability with respect to an equilibrium

point in the case of multiple Lyapunov functions assuming these criterion. His

theorem and its proof are given below.

Theorem 10.5 Suppose we have several Lyapunov functions V;, 1 =1,..., N,

188

with the same point of global minimum (the origin for convenience), corre-
sponding to the continuous-time vector fields & = fi(z). Let sy, be the switching
times of the system. If, whenever we switch in mode (or region) i, with cor-
responding Lyapunov function V;, we have Vi(x(sy), sx) < Vi(z(s;),s;), where
8j < sy is the last time we switched out of mode (or region) v, then the system

is stable in the sense of Lyapunov.

Proof Let R > 0 be arbitrary. Let m;(«) denote the minimum value of V;
on S(a). Pick r; < R such that in B(r;) we have V; < m;(R). This choice is
possible via the continuity of V;. Let r = min(r;). With this choice, if we start
in B(r), either vector field alone will stay within B(R).

Now, pick p; < r such that in B(p;) we have V; < m;(r). Set p = min(p;).
Thus, if we start in B(p), either vector field alone will stay in B(r). Therefore,
whenever the other is first switched on we will have V;(z(s1),s1) < mi(R), so
that we will stay within B(R).

The proof for general N requires N concentric circles constructed as the
two were above. O

To illustrate this theorem, suppose we are using the augmented task-space
potential function in conjunction with the reflexive filter. Before the aug-
mented task-space guiding potential function would be able to give the control
back to the reflexive command filter, V,cs— it:(q5)(t) < Vees—rit(@s) (Liast—switched—out)

must be true, where V,.s_fu:(5)(t) is the current value of V,.s_fu(qs) and

189

Vees—fitt(@s) (tiast—switched—out) the value of Vyes— sit(¢s) when we last switched

out of the reflexive command mode. If we were switching back to the aug-

mented task-space guiding potential function mode Vyuia—pot (1) < Vyuid—pot(tiast—switched—out)
must be true instead.

A less restrictive but still useful criteria is:

1. Each module or mode can be associated with a positive-definite, Lya-
punov function with a negative-semi-definite time derivative. The deriva-

tive must be negative-definite if we also wish to show convergence.

2. The Lyapunov function of the mode to be switched in is lower than the

Lyapunov function of that mode when it was last switched out.

In this case it is not required that the Lyapunov functions have the same
equilibrium point. We can no longer show stability with respect to a specific
point. However, we can still show that all trajectories will converge to at least
one of the equilibrium points using the invariant set theorem.

To prove that all trajectories converge to the union of the equilibrium

points, using the invariant set theorem, we need to show the following:
1. There exists a function V(&) with continuous first partial derivatives.
2. V(%) is bounded in the region in question.

3. V() is continuous and negative-semi-definite.

190

.
4. f is continuous.

The first three criteria are true for the global Lyapunov function given above.
It should be noted that the fourth criteria is used to show that V(:E') is uni-
formly continuous in the proof for the set-invariant theorem. Therefore the
fourth criteria can be replaced by the requirement that V(;i') is uniformly con-
tinuous, which will be true for the multi-modular system above if all Vz(a_c') are

uniformly continuous.

10.4 Stability in the Sense of Lagrange and
Quasi Lagrange

The concept of stability in the sense of Lagrange, and the local invariant-set
theorem are more useful than Lyapunov functions in the context of behavioral,
or reflexive systems. The reason is that such systems commonly cannot be
associated with a single equilibrium point, but instead sets of attraction. An
example of this is the flee reflexes described in Chapter 8.

In Section 10.1 it was described how the local invariant set theorem could
be used to show convergence for the flee reflexes. In this section I will also
introduce a stability concept which could be used in the context of invariant
sets, and sets for which V(a_c') — 0. This type of stability concept will be referred

to as Quasi Lagrangian.

191

The Quasi Lagrangian stability concept is defined with respect to regions,
or subsets of the space spanned by higher-level output vectors, rather than
equilibrium points. Before this is done we have to define the concept of an
“encapsulating superset” and “encapsulated subset.” Figure 10.8 illustrates

the concept of an encapsulating superset.

Definition 10.16 Set A is an encapsulating superset of set B if A is a su-
perset of B, and for any point b belonging to B there exists a ball By with the
center b and radius Ry, > 0 (VZ,||7 — 5“ < Ry) such that all points in By be-
longs to A. In other words the boundary of A does not intersect the boundary

of B. In a similar fashion B is an encapsulated subset of A. I will denote this

ADB.

AencapsulaiesB - Alisasuperset of B,
but A does not encapsulate B

Figure 10.8: In the figure to the left, A is an encapsulating superset of B,
because we can find a non-zero sized ball, even for a boundary point of B,
which is a subset of A. In the figure to the right this is not possible.

In the following definition I will denote B is a subset of A4 as B C A, and

A is a superset of B as A D B. That the point p'is in a set A will be denoted

192

p € A. The definition for region stability is as follows:

Definition 10.17 A system is said to be stable in a region sense with respect
to the region Bq if, for any region Bgr being an “encapsulating superset” of
Bq, there exists a region B, which is a superset of Bq, such that if ¥(0) is in
B,, then #(t) is in Br for allt <0, where ¥ is a state vector, or higher level
outpul veclor.

or in a more compact form,

VBr 3 Bq,dB, D Bg : 5(0) € B, = f(t) € Br,Vt >0

It should be noted that for this definition to be fulfilled it is necessary that
Br D B, D Bg. Using this definition we can formulate a region stability
criterion for using the Quasi Lagrange function. Region stability means that
if we start sufficiently close to a region Bg we will stay within an arbitrary
region Bpr encapsulating the region Bg. The entire purpose of this definition
is to extend the concept of stability to the case where a goal is a subset of the
space spanned by the output vectors from higher-level modules, rather than

just a single point. The concept of region stability is illustrated in Figure 10.9.

Theorem 10.6 [f, in the ball Bg, there exists a scalar function Q with con-

tinuous first partial derivatives such that,

1. Q(&) is bounded and continuous everywhere within Bpg.

193

Figure 10.9: The concept of region stability replaces the equilibrium point
with a goal set. This goal set could for example be an invariant set. The
figure illustrates that for the Br chosen there is a #(0) € B, so that ¥(t) € Br
for all future.

2. Q(Z) is strictly positive everywhere inside Bg, except inside Bg where it

18 Zero.

3. Q(¥) is negative, or zero everywhere.

then the system described by the Quasi Lagrangian function Q(Z), is region
stable with respect to the region Bq. If, actually, the derivative Q(:Z") is strictly

negative in Bgr, then the region stability is asymptotic.

Proof Let m be the minimum of Q on the boundary of the region Bp.
Since Q is strictly positive outside the region Bpr, and Bp is an encapsulating
superset of Bq, m exists and is strictly positive. Furthermore, since Q(Bg) =
0, there exists a region B, which is a superset of By such that Q(#) < m for any
7 inside the region B,. Since Q is non-increasing along system trajectories, Q

remains strictly smaller than m, and therefore the trajectory cannot possibly

194

cross the outside of region Br. Thus any trajectory inside the region B,
remains inside the region Bp for all future times, and therefore region-stability
is guaranteed. O

It should be noted that the Quasi Lagrange functions for the flee reflexes
discussed above fulfills the criteria given in this theorem except for two details.
The boundary of the region Bgq is discontinuous, and Bg is an unbounded
subset of joint-space which cannot be encapsulated by another subset in joint
space. This can be taken care of (in theory) by virtually smoothing the flee-
potential at the discontinuity, and bounding the region Bg so that it covers

all space of operation. This will be further discussed in Section 10.4.1.

10.4.1 Stability and Convergence Analysis for the Flee
Reflexes

In this section it will be shown that the flee reflexes converges to the invariant
set corresponding to the free-space, using the local invariant set theorem. It
will also be shown that the flee reflexes are region stable using Quasi Lagrange
functions. The stability analysis in this section requires fixed higher-level
commands, and a static environment. With a static environment is meant
that the obstacle map and the corresponding potential fields for the moving
obstacle causing the flee-response are constant.

In the case of the wall-emulating flee reflexes the reflexive command filter

195

guarantees, under static conditions (the wall not approaching), that the robot
will stay within the free space if it already is there. For this reason the free-
space corresponds to an invariant set. Further, if the robot is intersecting a
wall, the flee reflex will drive the robot into the invariant set (free-space). To
show this we can use the flee potential as our function V.

According to Section 8.1 the startle reflex generates a command which
brings the robot in a direction which corresponds to a maximum move in the
negative y-direction with minimum joint moves. Even though this does not
correspond to a move along the y-coordinate axis, it certainly corresponds to
a decrease of the y-coordinate, and thus a decrease of V. The retraction reflex
moves the robot strictly along the y-axis, which of course corresponds to a
decrease of V.

For these reasons, the flee reflex guarantees that the flee potential decreases
outside the invariant set, i.e. Y < 0. Another requirement for the local set-
invariant theorem to apply is that 7= _’(:i') is continuous, which cannot be
done.

—

However, the fact that f(Z) is continuous is only used for the purpose of
proving that Vs uniformly continuous. Thus, the demand that 7= _’(:Z") is
continuous can be replaced with the demand that Y is uniformly continuous,

which in this case is easier to show. When the path generated by the reflex

controller is smooth, and continous, and has a bounded time derivative, both

196

Y and V are uniformly continuous. Thus, the invariant set theorem applies,
which means that all trajectories will converge to the invariant set, which in
this case is the free-space.

In the case of the block-emulating flee reflex the invariant set consists of
the intersection of the free-space and the space where the flee potential is
zero. The static command filter guarantees that the robot always will stay
within the free-space once in the free-space. The hold reflex guarantees that
the robot will not approach the flee potential field once the robot has left
the flee potential. The hold reflex and the static command filter are the two
“containment reflexes”® which define the invariant set in this case.

It should be noted, however, that the intersection of the free-space and
the space where the flee potential is inactive does not correspond to a true
invariant set, due to the fact that robot dynamics can cause the robot to enter
the flee potential, even though it cannot reenter once it left the flee potential.
However, assuming that the robot has entered the flee potential once, the union
of the free-space and the space where the flee potential is inactive represents
an invariant set.

The block-emulating flee reflex also consist of a startle reflex, and a retrac-
tion reflex. Both the startle reflex and the retraction reflex guarantee that

Y < 0, for the same reason as for the wall-emulating flee reflex. In other

5For a definition of containment reflexes see Section 10.5, or 3.3

197

words, both the wall-emulating flee reflex, and the block-emulating flee reflex
guarantee that all trajectories will converge to an invariant set, according to
the local invariant set theorem.

In the remainder of this section, we will discuss the region stability of the
flee reflexes. To show region stability, of the flee reflexes, we need to show that
for the corresponding Quasi Lagrange functions the following criteria holds for

the retraction reflex.

1. Q(&) is bounded, continuous, and has continuous first partial derivatives,

everywhere within Bg.

2. Q(Z) is strictly positive everywhere inside Bg except inside Bg where it

is zero.

3. Q(%) is negative, or zero everywhere.

according to Theorem 10.6.

The startle reflex is a reflex which is fired once and then turned off and
replaced with the retraction reflex. For this reason the startle reflex can be
ignored in this stability analysis. The Quasi Lagrange function for the wall-
emulating retraction reflex is Q,ctr(Z) = (Yfictd—orf — Y(Z)) i Y(Z) < Yfictd—ofs-
The connected goal subset is in this case, y(7) < Yfield—oss. The analysis in
Section 10.4 referred to goal subsets limited in size which could be enclosed by

regions were the Quasi Lagrange function is defined. This is obviously not the

198

case here. However, this is still not a problem. For the purpose of analysis we
can limit the goal subset, and surround it with the Quasi Lagrange function,
in a manner which has no practical implications®.

Q,etr(¥) is obviously continuous and positive everywhere except at the goal
set, where Q,,(Z) = 0. Further, the retraction reflex commands a motion of
the robot’s tool which is parallel to the y-axis, and thus y(&) is monotonically
increasing, which means that Q.Tet,«(f) is negative, and thus the system is
asymptotically stable in a Quasi Lyapunov sense.

In the case of the block-emulating flee reflex the Quasi Lyapunov function
18 Qretr(¥) = Fiee(¥) when 7 is located within the reach of the flee-potential
field and otherwise 0. Q.. (%) is obviously continuous and positive except for
outside the flee-potential. When the retraction reflex in this case commands
a motion which is derived from the gradient of the flee-potential, QTetT(f)

i1s Quasi negative-definite, and thus the system is asymptotically stable in a

Quasi Lyapunov sense.

For example limiting the goal subset so that the space belonging to y(¥) < Yficta—os s
outside the goal subset could never be reached by the robot

199

10.5 Stable Interaction Among Simple and
Triggered Containment Reflexes, and Sim-

ple or Triggered Repulsors

In this section I will discuss stability and cycling with respect to interaction
among simple-containment reflexes and triggered-containment reflexes, and
repulsor reflexes. This analysis is not applied in real time, and is therefore
fundamentally different from, for example, Lyapunov theory. Only the order
in which things happen matters.

The definitions for simple, triggered, containment, and repulsor reflexes are:

e Simple reflexes are defined as reflexes which are active in a specific region
of the state-space called the activation region of the reflex. It should be
noted that the activation region might change due to external stimuli, or
a changing environment. However, the activation region is not dependent

on the current robot state, or internal task space commands.

o Triggered reflexes are reflexes which are activated if the robot enters a
certain region of the state-space called the trigger region, and remains
active as long as the robot remains in a certain region of the state-space
called the activation region. The activation region must be a superset of

the trigger region. In other words the activation region has hysteresis.

200

The difference between the activation region and trigger region is called
the hysteresis region. It should be noted that if the trigger region and
the activation region are identical the reflex is a simple reflex. This type

of reflex is illustrated in Figure 10.10.

A containment reflex is a reflex for which all commands generated by the
reflex are confined to the same region in which the reflex is active. A
containment reflex can, for example, be a simple or a triggered reflex.

Examples of simple-containment reflexes are:

1. Reflexes which generate commands which bring the robot to a specific

point.

2. Reflexes which make the robot converge to a subset, rather than a

specific point.

3. A reflex which keeps the robot in the position within the activation
region where the robot entered the activation region (first was found
within the activation region). This particular type of reflex is called
a “hold reflex”. The point where the reflex “holds” the robot does
not have to be located on the boundary of the activation region.
External stimuli can, for example, create a new activation region.
Sampling times and delays can also allow the robot to penetrate a

fixed activation region.

201

4. Reflexes which confine the robot to the activation region, like the

static command filter (general case).

Figure 10.11 illustrates these four simple-containment reflexes.

e Repulsor reflexes push the robot outside the activation region. A repulsor

reflex can be a simple or a triggered reflex.

Reflex activation region

Hysteresis Region

Figure 10.10: If the robot enters the grey area the reflex is activated. This is
called the trigger region. The reflex is not deactivated until the robot leaves
the white area. The white area is called the hysteresis region. The activation
region is the union of the hysteresis region and the trigger region.

If in a set of interacting reflexes, the reflex B4 controls the robot, the reflex
R4 1s said to be active. If R4 1s a simple reflex, R4 can only be active if
the robot is within its activation region A. If the robot is located inside the
intersection of two activation regions, the reflex which controls the robot is

said to have precedence over the other.

Assume three simple-containment reflexes R4, Rp, and Rc. Assume reflex

202

A. Goal 5

Figure 10.11: Four reflexes R4, REp, Rc, and Rp are active in four different
regions. R4 generates a specific command, Rp keeps the robot within the
activation region, Rc makes the robot converge to a subset of the activation
region, and Rp holds the robot where it entered the activation region.

R 4 has precedence over reflex Rg when the regions for reflex B4 and Rp over-
lap, and reflex Rp has precedence over reflex Rc when their corresponding
regions overlap. If reflex B¢ has precedence over reflex R4 when their respec-
tive regions overlap, this could lead to cycling. This situation is illustrated in
Figure 10.12. However, if reflex R4 has precedence over Rg and R, and Rp
has precedence over reflex R¢, then the reflexes will interact without causing
cycling. This result can be generalized in the theorem below. However, I first

need to make a definition of set connectedness and reflex precedence.

Definition 10.18 Two sets A and B intersect if AN B # 0. If there exists

203

a set of sets S; such that Sy intersects Sy, and S; intersects Siy1, and Sy_1

intersects Sy, then So and Sy are connected.

An alternative way to define connectedness is through the use of a recursive

definition.

Definition 10.19 Set A and set B are connected if they intersect, or A in-

tersect with a set which is connected to B.

It should be noted that if a set A is connected to a set B, and B is connected
to a set ', then set A and (' are connected. This definition is illustrated in

Figure 10.13.

Definition 10.20 Reflex R precedes reflex Rp if Ra generates the system
command in areas where the two reflexes’ activation regions intersect. If the
two reflexes do not have any intersecting activation region, the precedence can

be randomly set. If reflex R4 precedes reflex Rg we denote this R4 > Rp.

Theorem 10.7 Suppose a system consists of a set of simple-containment re-
flexes R; with connected activation regions in the state-space. If all reflexes R;
can be arranged in a precedence order R; > R;, if 3 > 1, then the connected

set of reflexes R; does not contain any cycling among its activation regions.

It should be noted that if two reflexes Ry and E; do not intersect, the prece-

dence order among them can be chosen arbitrarily. However, if R, > R,,, and

204

RBactive

| X C-Goal C.

F%‘Qctive R.active
X

Cycling

R>R>R, butR>R .

Figure 10.12: If R4 > Rp, R > Rc, and Re > R4, this could lead to cycling.

R; < R,,, we have to choose R; > R;. The list containing the precedence of

all the reflexes will be denoted the precedence list in this text.

Proof The following is true by definition if the reflexes are ordered in a
precedence order --- > R;y1 > Ry > Ry > -+ ¢

Suppose the robot is controlled by the reflex R;. The reflex R; generates
commands which are constrained to its activation region. Thus the reflex R;
cannot loose control of the robot unless a reflex R; of higher precedence takes
control of the robot. Thus the precedence level of the reflex in control can
never decrease. This means that none of the reflexes can be reactivated, which

means that we cannot have cycling with respect to reflex activations. a

205

— |
E
H
1
A intersects B,F,H All sets ar e connected to all other
B intersects A,F,C sets.

C intersects B,D

D intersects C,E,F,G
E intersects D

F intersects A,B,D,G
G intersects D,F

H intersects Al

I intersects H

Figure 10.13: A connected set of regions.

Trigger-containment reflexes are defined as reflexes in which activation re-
gions depend on whether the reflex already is active or not. In other words
the activation region has hysteresis. If the reflex is not active, the reflex will
become active as soon as the robot reaches a certain region called the trigger
region. If the robot is already active, it will remain active as long as it resides
within the region called the activation region. The trigger region must be a
subset of the activation region. This is illustrated in Figure 10.10. The differ-
ence between the trigger region and activation region is called the hysteresis
region.

Trigger-containment reflexes can be treated the same way as simple-containment
reflexes with respect to precedence lists. The reason is that, once a trigger-
containment reflex has been triggered (activated), only reflexes with higher
precedence can steal the control of the robot. It is thus impossible to retrigger

the trigger-containment reflex again.

A — T . B
—_— pa——
— E=0 —
—_ O D
U -
— —
-~ -
Wherethe Cycling
robot goes:

A. HysterisRegion Hysteris Region B.

Vs

Figure 10.14: If the purpose of two adjacent reflexes R4, and Rp is to bring
the robot outside the activation regions, instability can result, with or without
a precedence list. The precedence list does not matter in any of the cases when
the activation regions do not intersect.

For the case of repulsor reflexes, a precedence list will not be enough to
guarantee stability. The reason is that the repulsor reflex will move the robot
outside its activation region. When the robot is outside the activation region,
other reflexes might be activated, which will drive the robot back into the
activation region of the repulsor reflex. However, stability is achieved if all
reflexes with activation regions intersecting the activation region of the repulsor
reflex, are made compatible with the repulsor region.

Simple-containment reflexes can be made compatible with a repulsor reflex

if one of the following is true:

e The repulsor reflex has a lower precedence than all of the simple-containment
reflexes which it intersects. In other words, once the repulsor reflex is

done, it cannot take control of the robot again.

e The boundary of the activation region of the repulsor reflex is compatible

207

with all other reflexes intersecting its boundary. In other words, the
commands generated by adjacent reflexes will not drive the robot back
into the activation region of the repulsor reflex. A hold reflex is always
compatible with all types of repulsor reflexes. If the adjacent reflexes are
not hold reflexes, the trajectories generated by the adjacent reflexes must
correspond to a positive or zero, dot product with the boundary normal

of the repulsor reflex.

The system consisting of the block-emulating flee reflex, the hold reflex,
and the static command filter can be analyzed using the techniques developed

in this section.

e The block-emulating flee reflex can be viewed as a triggered repulsor
reflex, which drives the robot outside its activation region as soon as the

robot enters its trigger region.

e The hold reflex can be viewed as a simple-containment reflex. The acti-
vation region for the hold reflex is a superset of the activation region for
the block-emulating flee reflex. The block-emulating flee reflex has prece-
dence over the hold reflex. However, a hold reflex is compatible with any

repulsor reflex.

o The unspecified higher-level module” for which it generates robot com-

mands in joint space, can be viewed as a simple-containment reflex active

“For example a human operator

208

everywhere. It has the lowest precedence of all reflexes.

e The reflexive command filter can be viewed as a simple-containment reflex
which activation region is the free-space. However, the reflexive command
filter is not a reflexive action competing with the other reflexes. It is a
command filter located one step below the other reflexes in the system
hierarchy, as indicated in Figure 10.15. It has precedence over all other
reflexes due to this fact. However, it cannot be included in the precedence
list analysis with the other reflexes, when its precedence over the other

reflexes does not deactivate these reflexes.

The activation regions for the different reflexes are illustrated in Figure 10.15.

This system is stable because the two containment reflexes, the hold reflex,
and the command module, have a specific precedence order, and the hold reflex
is compatible with the repulsor reflex (the flee reflex). The static command

filter resides at a lower level in the system hierarchy.

10.6 The Use of Progress Measurement Func-

tions

The progress measurement function is another concept which is used for the
purpose of non-real time control analysis of interacting modules. It is a more

general concept than the concept described in Section 10.5.

209

Flee Reflex Filter = all space - obstacles.

2z
Activation Region + + . obstacles.

Trigger Region . Activation Region for Static Command

Activation Region for command module
isall space.

Hold Reflex
Command Precedence List
Module
Hold Reflex [—» <—| FleeReflex

Reflexive Command
Filter

Figure 10.15: The respective activation regions for the flee reflex, hold reflex,
command module, and reflexive command filter. The reflexive command filter
resides at a lower level in the system hierarchy.

The progress measurement function denoted P = D + R7T consists of two

parts.

e The distance measurement D measures the distance to a certain system
goal. This can be the actual distance to a goal in state-space, or a mea-
surement of how much more must be done to complete a certain task. A
natural choice for D for the example of a robotic lawn mower would be

the lawn area which has not yet been mowed.

210

e The readiness for task measurement R7 measures how difficult it is de-
crease the distance measurement D. The reason for the existence of R7T is
that the purpose of many modules in complex systems is not to complete

the system task, but instead to enable other modules to do so.

The progress measurement function is used to make sure that the activation
of a module will, at the time it is done, result in a decrease of the progress
measurement function. While the module is active it is allowed to temporarily
increase the progress measurement function. Only the value of the progress
measurement function at control mode switches is of interest. It should be
noted that the progress measurement function does not correspond to a control
method; it is merely an analytical tool used to show that a given system will
converge to a system goal. It should also be noted that the concept of the
progress measurement function applies to any kind of module, fixed action
patterns, and other behavioral modules.

A simple illustration of a progress measurement function is the following.
Suppose a robot (artificial insect, mobile robot etc.) must reach a certain final
position. The control system consists of two modules. One module A, is able
to generate a pure rotation around a z-axis of the robot. The other module
B, is able to move the robot forward (only). This situation is illustrated in
Figure 10.16. If the robot is turned the wrong way module A must first rotate

the robot.

211

>xX Goal

Figure 10.16: The robot in the picture can only move forward and therefore
must be turned towards the goal before moving.

The progress measurement function in this case could for example be P =
|(Zo = Zy)|| + ||(Zo — y)||||sin(30)]|, where &g is the start position, @, is the
final position, and # the angle between the orientation of the robot and the
direction towards the goal. Until § < 45 degrees module B cannot decrease the
progress measurement function, and should therefore not be activated. How-
ever, module A can decrease the RT' component of the progress measurement
function, and can therefore be activated. If § = 0 degrees, module A can no
longer decrease the progress measurement function, but module B can do so.

Progress measurement functions are not necessarily expressed in terms of
state-space vectors, or as desired state vectors. For this reason it is important
to make sure that a decrease of the progress measurement function corre-
sponds to what we would like to mean by progress. For example ﬁ, where N

corresponds to the number of times we are switching control modes, is not a

permissible component of a progress measurement function.

212

Progress measurement functions are generated as follows:

1. Construct a distance measurement D which corresponds to how much is
left to do before a task is completed. Make sure that D cannot be de-
creased by purposeless mode switching. A decrease of D must correspond
to bringing the task closer to completion. The distance measurement must

be zero at the goal.

2. Construct a measurement which corresponds to how difficult it is to de-
crease the distance measurement. This measurement must also be zero

at the goal.

3. Add the two.

4. Make sure all modules are able to decrease the progress measurement
function, and that at least one of the modules is able to decrease the

progress measurement function in all possible situations.

When analyzing a control strategy one must make sure that:

1. The requirements for the progress measurement function are met.

2. A module is only activated if it can be proven that the activation of
the module finally will lead to a decrease of the progress measurement

function.

213

3. The decrease of the progress measurement function is larger than a chosen

minimum value AP.

If this is true, the system will converge to the system goal in a finite time less
than Ps“zigm‘”, where Psiort 18 the initial value of the progress measurement
function, t,,4; an upper limit on the time any module is active, and AP the
minimum decrease of the progress measurement function.

An example of a progress measurement function is the one for the sonar-

based world mapping system,

1
Py = VU+ZVP(1—%>§(1+Di)+(256—T0>VT’
2 0

1
P, = (256—T)ZVZ-O(1—%)§(1—|—DZ»),

where Py corresponds to the progress measurement function before all space
has been explored at least once, and P, corresponds to the rest of the time
(Pr < Po).

VY is the volume of all unexplored space, V. the volume of the found obsta-
cle ¢, C; the confidence level for obstacle ¢, Ty the initial confidence threshold
level, T' the confidence threshold level, and V7 the volume of all space. D;
is a measurement which measures the robot’s ability to investigate a found
inconsistency. The maximum value of D; is 1 and the minimum 0. The less D;
is, the better the robot can investigate the inconsistency. D; can also be seen

as a distance measurement to the obstacle. It should be noted that 256 is the

214

maximum confidence threshold level (the goal). This progress measurement
function is zero at the goal (all space fully examined), and any decrease of any
of the components corresponds to bringing the the task closer to completion.

When the robot’s work-space is partially unexplored, P = Py and the

respective module does the following to the progress measurement function:

1. Look-Around will decrease VY. If an inconsistency is found 3, VO is
increased with the same amount that V'V is increased. When (1— %)%(1 +
D;) always is less or equal to one this means either a decrease of Py, or
that APy = 0. However, when unexplored space always must be explored

before an unknown obstacle can be found, this always means a decrease

of 7:’0.

2. Look-Path will either leave Py intact or decrease Py depending on whether
the desired path goes through already explored or unexplored space.
Look-Path must be activated a limited amount of times for the system to

be able to converge.

3. Beam-At directs the beam towards a found obstacle and will therefore

decrease D;. It is also likely to decrease V.
4. Approach will decrease D;, and possibly VY.

5. Investigate will increase the confidence level for the found inconsistency

and will therefore decrease the factor (1 — %)

215

Once all space has been examined at least once, P = P,. Under this

condition the respective module does the following.
1. Look-Around will no longer be active.

2. Look-Path will be active, but not for the purpose of exploring unexplored
space. It will not effect P,. It must therefore only be activated a limited

amount of times.

3. Beam-At directs the beam towards the found obstacles and will therefore

decrease D;.
4. Approach will decrease D;.

5. Investigate will increase the confidence level for the found inconsistency

and will therefore decrease the factor (1 — %), and ultimately increase T'.

To show that P finally will become zero, we must be able to show that the
total operating time which leaves P intact is finite. If the sonar-based world
mapping system continuously receives tasks to complete, which results in the

robot always passing through investigated space, this cannot be done.

216

10.7 Final Conclusions and Overview for Chap-

ter 10

This chapter dealt with various concepts regarding stability, convergence, cy-
cling, and performance in the context of reflexive or behavioral modules. Com-
mon stability concepts which apply to real-time single-module systems were
reviewed and applied to the reflexive systems I have implemented. New per-
formance measurements were introduced in Sections 10.5 and 10.6. These per-
formance measurements were used to analyze non-real-time interaction among
behavioral modules.

The concept of stability in the sense of Lyapunov was discussed and im-
plemented on the static command filter and the guiding potential functions.
The interaction between the static command filter and the guiding potential
functions was analyzed using global Lyapunov functions, and multiple Lya-
punov functions. The invariant set theorem was succesfully used to show that
the wall-emulating flee reflexes, and the block-emulating flee reflexes resulted
in the robot converging to free-space. The concept of QQuasi Lagrange stabil-
ity was also introduced so that the flee reflexes could be analyzed in terms
of stability. Stability and convergence analysis applied to the output vectors
of higher-level modules was validated using the concept of command-tolerant

stability.

217

In Section 10.5, the interactions between simple-containment, and triggered-
containment and repulsor reflexes were discussed. The system consisting of the
flee reflex, hold reflex, command generator, and static command filter was dis-
cussed. In Section 10.6, progress measurement functions were used to analyze
the performance of the sonar-based world mapping system.

The concepts discussed and introduced in this chapter were applied to the
reflexes and behavioral modules I constructed. It was demonstrated that Lya-
punov functions, multiple Lyapunov functions, the set-invariant theorem, and
(Quasi) Lagrange stability concepts, are useful concepts for real time analysis
of behavioral systems. The new concepts introduced were shown to be useful

and fairly general.

Chapter 11

Advice and Experience in the Context of the

Design of Practical Behavioral Systems

In this chapter I will discuss the stability and cycling problems I encountered
during my experiments. [will also give qualitative advice on how to construct
reflex modules, and how to design systems containing interacting behavioral
modules. First T will give the arbitrary behavioral structure mentioned in
Section 3.3 which I will refer to in specific examples later on.

Figure 11.1 illustrates a generic behavioral structure. In this hierarchical
structure the behavioral command filters constitute the “stem” through which
all commands are passed and filtered. The behavioral action modules are or-
ganized in layers. Within each layer the different modules compete for control.
These modules may depend on external sensors, and higher level commands,
as well as the robot state. These potential dependencies are not indicated in
Figure 11.1. The “virtual switch controller” in Figure 11.1 is not necessarily
a separate switch controller. In the systems I implemented, the virtual switch

controller is simply the result of the interaction among the virtual sensors of

218

219

Environment Environment

Module-3-A Higher Level Module-3-C
Virtual | [Active Commands \ﬁ Active L evel-3
— Sensor Component Sensor Component | [<—|
Module-3-B X Module-3-D
e T
— Sensor Component| Sensor Component
Module-2-A Module-2-C
Virtual Active Active Level-2
" Sensor Component Sensor Component [+
Module-2-B X Module-2-D
e |
—(Switch
C d Control
Module-1-A -omman Module-1-C
Virtual Active Filter Virtual Active Level-1
— Sensor Component| Sensor Component| |[<+—
Module-1-B X Module-1-D
e e e I
Sensor Component Sensor Component

eflexive Command Filt
% for Obstacle Avoi ce
Active
robot-state Cspace | 4ol Command

Inspector |
Filter

Tra éctory
" Gonerater | Level-0
M 5

Servo

irtual
Switch
Control,

X robot-state

Controlle

X robot-state

Figure 11.1: An illustration of a generic behavioral structure. The behavioral
command filters constitute the “stem” through which all commands are passed
and filtered. The behavioral action modules are organized in layers. Within
each layer the different modules compete for control. The virtual switch con-
troller represents the interaction among the modules.

the behavioral modules. In other words the individual modules take control
of the “virtual switch controller”, depending on the state of the virtual sen-
sors. However, it is conceivable that the virtual switch controller represents a
separate module, or a human operator.

An example of such a structure is the following. At level-0 resides the servo

controller, the robot and the reflexive command filter for collision avoidance.

220

At level-1 resides the block-emulating flee reflex set, the startle reflex, the

retraction reflex, and the hold reflex. A path-planner corresponds to the com-

mand filter at this level. The path-planner translates higher-level commands

into a set of sub-goals which are attainable using the lower level reflexes. At

level-2 resides the sonar-based world mapping system or a human operator.

Environment

Environment

Module-3-A Higher Level Module-3-C
Virtual | [Active Commands Virtual | [Active Level-3
— Sensor Component Sensor Component | [<—|
Module-3-B X Module-3-D
e T
Sensor Component Sensor Component irtual
—1(Switch
Control,
Module-2-A Module-2-C i
Virtual Active Active Level-2
—— Sensor Component Sensor Component [+
Module-2-B X Module-2-D
e
Unstable (switch
e == Control
Module Module-1-A mmand Module-1-C oy
. = L evell
Component, ¥] Sensor Component
Module-1-B Module-1-D
[——

X

Virtual Active
Sensor Component

robot-state

eflexiv: Commarid Filt

for Obstgcle Avoi ce
Copach Active
space |t COmmand|

Virtual Active
Sensor Component

Inspector 7|
Filter

X robot-state

irtual
Switch
Control,

. Traectory
Generator
- i +

Servo
Controlle

X robot-state

L evel-0

Figure 11.2: A module is badly designed and generates an unstable, and finally
unbounded output to the rest of the system, disregarding all feedback loops.

The stability and performance problems I encountered during my experi-

ments were of the following types:

221

Environment Environment

Module-3-A Higher Level Module-3-C
Virtual | [Active Commands Virtual | [Active L evel-3
> Sensor Component | |[<—
Module-3-B X Module-3-D
ol T
— Sensor Component| Sensor Component

Module-2-A Module-2-C
-> Active Virtual Active L evel-2
— |:| Component [N\ "*

Module-2-B X Module-2-D
= e | -
Sensor Component —
—(Switch
C d Control
Module-1-A LSl Module-1-C
Virtual Active Filter Virtual Active Level-1
— Sensor Component| Sensor Component||=<+—
Module-1-B W Module-1-D
>
Component Sensor Component

eflexive Comm Filt
for Obstacle Avoidgnce
X robot-state Cspace ﬁc“ve d

Inspector
Filter

irtual
Switch
Control,

X robot-state

rajectory
oo Level-0
e 5

Servo

Controllel

X robot-state

Figure 11.3: The system is unstable due to the unsuccessful closing of two
feedback loops.

1. One module, or a set of interacting modules, is badly designed and there-
fore behaves unstable in open loop. An illustratation of the locality of

these types of problems in the pine-tree structure is made in Figure 11.2.

2. One or more modules are unstable in their respective feedback loop. This

is illustrated in Figure 11.3.

3. Real-time interaction problems among the modules. This is illustrated in

Figure 11.4.

222

4. Non-real-time interaction problems among the modules. This could also

be illustrated by Figure 11.4.

Environment Environment

Module-3-A Higher Level Module-3-C
Virtual | [Active Commands Virtual | [Active Level-3
— Sensor Component Sensor Component | [<—|
Module-3-B X Module-3-D
e T
— Sensor Component Sensor Component
Module-2-A Module-2-C
Virtual Active Active Level-
" Sensor Component Sensor Component [+
Module-2-B X Module-2-D
= B
Sensor Component Sensor Component —
—(Switch
C d Control
Module-1-A -omman Module-1-C
- Level-1
— Sensor Component| Sensor Component| [<+—
Module-1-B X Module-1-D
Sensor Component Sensor Component

eflexive Command Filt
for Obstacle Avoi ce
X robot-state Cspace Adtive X robot-state

o Command
Inspector T
Filter

irtual
—1(Switch
Control,

N

L evel-0

‘ X robot-state

Figure 11.4: The switching among the modules is performed unsuccessfully,
and generates cycling. For example, module A is repeatedly reactivated under
identical conditions.

Section 11.1, 11.2, 11.3, and 11.4 are devoted to the discussion of respective
cases. In Section 11.5 I will give advice regarding the design of reflexive and

behavioral systems.

223

11.1 Single Module Instability

Even though it is common in “low-level” system design to allow a single module
to be individually unstable, as long as the resulting system with feedback
loops is stable, this is not the case for complex behavioral modular design.
The reason is that the individual behavioral modules perform specific tasks
which can be functionally isolated, and even used in other systems. In other
words behavioral modules are expected to be stable when isolated, as well as in
feedback loops. The reasons why individual behavioral modules are unstable,
are for example, that the basic module design is flawed, or that the computer
program implementing the module contains bugs. A few examples of problems

I encountered are :

e In an early development stage the C-space inspector in the reflexive com-
mand filter sometimes could not decide on what free-space prism to ap-
prove at obstacle corner points. The cause behind this instability was that
the C-space inspector, at that time, was allowed to disapprove free-space
fronts which already had been approved. The problem was made worse
due to the fact that a program bug resulted in disapproval of free-space
containing parts of the braking prism. This situation is illustrated in
Figure 11.5. This situation could have been resolved at the design stage

with the help of Lyapunov analysis.

224

e Several C-programming bugs during development causing single module

instabilities, resulting in system instabilities

Approve Approved
Free-Space—"| _position

Prism

Braking Prism

oS

Curre
Position

Approved
Position

Approy ed/
Free-Space
Prism

et
n

itipn

Braking Prism

Figure 11.5: The C-space Inspector is undecided about the free-space prisms
it generates in this example of a flawed design.

Chapter 10 describes several methods for analyzing these situations. The
stability of a single module can be analyzed using Lyapunov functions, the

local set invariant theorem, or Quasi Lagrange functions.

11.2 Instability and Cycling Due to Unsuc-

cessfully Closed Feedback Loops

This type of problem can be subdivided into three sub classes:

1. Cycling and stability problems may arise due to the active component’s
dependency on the robot state. In other words the system consisting of

the servo-controller, robot, and the active component of the reflex, with a

225

feedback loop from the robot state to the active component of the reflex

is unstable. This situation is illustrated in the top part of Figure 11.6.

2. Cycling and stability problems may arise due to the virtual sensor’s de-
pendency on the robot state. In other words the system consisting of
the servo-controller, robot, and the virtual sensor component of the re-
flex, with a feedback loop from the robot state to the virtual sensor is

unstable. This situation is illustrated in the bottom part of Figure 11.6.

3. Cycling and stability problems may arise due to multiple feedback loops.

From classical control theory we know that one way to achieve a stable
system containing multiple feedback loops, is to make the inner feedback loops
the fastest. In other words, for nested feedback loops the bandwidth for the
feedback loop system should be larger the more deeply nested it is. A rule of
thumb for linear systems is that the difference in bandwidth between successive
loop closures should be an order of a magnitude. This situation is illustrated
in Figure 11.7.

The reason behind this is that the innermost feedback loop will appear to
be a constant (the trivial plant) to the next outer loop in this setup. The
innermost feedback loop system will already have converged before the outer
feedback loop starts to settle. Another way to see it, is that it is not possible

to derive the velocity from the acceleration before we know anything about

226

Virtual Active
Sensor Component

B. A. %rvo
Controller

Y
Robot

Instability related to feedback loop A.

1. [Virtual Active
P Sensor | .| Component

Controller

Y
Robot

Instability related to feedback loop B.

Figure 11.6: Illustration of two configurations that could cause instability : I.
Time delays, robot dynamics etc. could cause cycling problems or instabil-
ity when the active component in the reflex controller depends on the robot
state. II. Time delays, robot dynamics etc. could cause instability or cycling
problems when the virtual sensor in the reflex controller depends on the robot
state.

the acceleration, but if the acceleration is known we can derive the velocity.
Something similar can be said about the active component, and the virtual
sensor feedback loops.

With respect to Figure 11.7 the transfer functions of each loop closure are:

H(s)
1+ K. H(s
H(s)
(14+ K.H(s))s+ K,H(s)

Ti(s) =

227

|UX|
A

=
A

]

X

Figure 11.7: Three feedback loops with increasingly smaller bandwidths the
further out the loop is.

His)
(1+ K. H(s))s + K, H(s))s + K,H(s)’

T5(s) =

where T3(s) corresponds to the transfer function of the entire system.
It 1s possible to derive approximate relationships among the constants

K,, K,, and K,. If K, is large enough® it will dominate T (s) so that Ty(s) cor-

1

responds to the trivial plant -. For example, if H(s) = I then Ti(s) = o

which is a low-pass filter with a bandwidth of K,. If K, > ||s|| this low-pass

filter will act as the trivial plant % Under these circumstances T5(s) will act

as a low-pass filter with a bandwidth around ﬁ” For this low pass filter to

have a smaller bandwidth than the innermost loop K, > ﬁz, or K, > K,.

'In the frequency range of interest

228

For this loop to act as the trivial plant to the next outer-loop, or in other

words, act as a low-pass filter with much higher band-width than the outer-

loop, ﬁ—z > %ﬂ, or ﬁ: > \/E. These relationships are not very meaningful
in our context. However, it is important to design the feedback loops so that
the fastest loops are the innermost loops.

The active component typically monitors the robot state for the purpose of
continuous command generation. For example, the active component of the
reflexive command filter recomputes approved commands at a rate of 2000 Hz
based on the robot state, higher-level commands, and the approved free-space
prism. The virtual sensor feedback loops, on the other hand, generate low
bandwidth data, like reflex on-or-off, potential function updates, etc., based
on, for example, what region in the robot state space the robot is located. In
this analysis this fact will be used to analyze the two types of feedback loops
separately.

However, it should be noted that the system consisting of both feedback
loops (active component and virtual sensor), can often be analyzed using, for
example, Lyapunov functions or Quasi Lagrange functions. This is done in

Section 10.3.1 where the stability for the reflexive command filter was shown

using a Lyapunov function.

229

11.2.1 Instability and Cycling in the Active Compo-
nent Feedback Loop

Cycling and instability problems generated in the feedback loop from the robot
output to the active component are very typical for systems containing reflexive
actions. The problems are due to unfavorable robot dynamics and time delays
in the reflex control loop.

In this case it is usually time delays and robot dynamics which cause insta-
bility in the feedback loop. This situation may arise, for example, when the
robot is located between two obstacles which both generate a flee-potential and
a resulting flee-response. The two flee-potentials will generate a local mini-
mum. Time delays and sampling times would generate a non-zero minimum
step size in joint space. With a non-zero minimum step size the robot can
never reach the actual minimum position, instead the robot will cycle around
the local minimum. This is illustrated in Figure 11.8, where the physical set-
up is shown on top and the cycling resulting from the non-zero step moves
is illustrated below. Robot dynamics, servo-controller, and sensor inaccura-
cies could have a similar effect. The time delays are typically a result of the
computation times of the active component.

Consider, for example, the following case. The virtual sensor generates a
virtual potential field to the active component. The active component con-

tinuously computes a position command, based on the current position of the

230

Two opposing flee potentials causing a Local Minimum.

J—.

Minimum Step Size

Local Minimum

Figure 11.8: Robot between two obstacles with flee potentials. Non-zero min-
imum sized moves results in cycling around the resulting minimum.

robot. This position command could e.g. be generated as a position step
added to the current position.

When the active component generates a command based on the current
position, time delays and robot dynamics will cause the robot to overshoot
or miss the generated position commands. If the new position command is
generated by adding a small position or velocity vector to the current position
which supposedly would take the robot closer to a desired minimum, the con-
tinuous misreadings of the current position (due to sampling delays) and other
dynamic effects would most likely cause cycling around the minimum instead

of convergence to the minimum.

231

By preplanning a path in the given potential field, this problem is elimi-
nated, and we can still achieve the desired result. In this case the feedback
loop to the active component is entirely eliminated. This is illustrated in
Figure 11.9, which corresponds to the solution of the problem illustrated in
Figure 11.8. The path to the local minimum is preplanned and generated to

the underlying servo controller, instead of doing on-line “find the next point”

Preplanned
ath to Servo-Controller

calculations.

Local Minimum

Figure 11.9: Robot between two obstacles with flee potentials. A preplanned
path to the minimum, instead of on-line step-wise “next point” calculations.

An example of this situation occured during my experiments with a work-
space-based potential function in the context of the sonar-based world mapping

system. The commands to the servo-controller were generated on-line from a

232

potential function, resulting in cycling around local minima. Another type of
problem occurred in the context of the flee reflexes. The velocity commands
were originally derived on-line from the potential function generated around
the moving obstacle. Due to servo-controller inaccuracies and time-delays the
robot did not move strictly along the flee-direction, and deviated significantly
from the straight y-axis path towards the end of the flee-response. When a
local minimum appeared in the flee potential this also resulted in chattering.

To avoid these kinds of stability and cycling problems the following actions

could be taken :

1. Tt might be possible to entirely eliminate this feedback loop. This was
the action taken in the case of the flee reflexes. If the active component
is relying on a pre-planned path there is no need to inform the active
component about the current robot state. Doing this seems to imply that
the active component would be operating open loop. This is usually not
true when the virtual sensor, which is connected to the active component,

still is a part of a feedback loop.

2. Ifit isimpossible to eliminate the feedback loop containing the active com-
ponent, make sure that the active component and the feedback loop is not
unfavorably dependent on robot dynamics and time delays. This situa-
tion can be analyzed by applying Lyapunov functions, or the invariant-set

theorem. If it is hard to apply control analysis, the effect of time-delays

233

and robot dynamics on the active component must be estimated in a

conservative way, or dealt with in an empirical approach.

11.2.2 Instability and Cycling in the Virtual Sensor

Feedback Loop

The cycling and instability problems which are generated by the virtual sensor
are usually different in nature from the ones generated by the active compo-
nent. The events in the virtual sensor feedback loop are usually of a smaller
bandwidth, and often of a discrete nature. One example of a virtual sensor in-
stability is that the reflexes are instantly turned back on again after they have
been turned off, because the reflex off state causes the reflex to be turned back
on. Another is that the virtual sensor is unable to decide whether the reflex
should be on or off due to servo-controller or position sensor inaccuracies, or
time-delays.

An example of this situation is the following: A flee reflex generates a flee
response which brings the robot outside the flee potential field, where the
reflex is turned off. When the robot exits the potential field, another module
takes control of the robot. This module attempts to move the robot back into
the flee potential field. Despite the fact that the flee reflex has precedence
over this module this situation is likely to cause cycling. Time delays, robot

dynamics, and servo-controller inaccuracies will cause the robot to reenter the

234

flee potential with some speed and distance before the flee potential is turned
back on. This will generate a cycling pattern.

In this case we need to reconstruct the virtual sensor and the feedback loop
so that they become robust with respect to robot dynamics and time delays.

There are a few different ways of doing that, for example :

1. Make the turn-on conditions a strict subset of the turn-off conditions.
In other words apply hysteresis to the reflex. Simple triggered reflexes
are examples of reflexes with hysteresis. This is illustrated in Figure
10.10. The hysteresis region must be wider than the combined effect of
the time-delays, servo controller inaccuracies, and the robot dynamics
(brake-distance at expected speed). The block-emulating flee reflex is an

example of a simple triggered repulsor reflex.

2. Make it impossible for the reflex to be reactivated under static conditions
after it has been turned off. In other words, make sure that the goal
of the reflex represents an invariant set. This can be done by replacing
the turn off state with an “after the turn off” reflex. An example of
this is the hold reflex for the block-emulating flee reflex. The hold-reflex,
holds the robot in its position as long as commands from other modules
could cause the robot to reenter the flee-potential field. In the case of the
wall-emulating flee reflex, the reflexive command filter guarantees that

the robot cannot reenter the flee-potential field. This way the reflexive

235

command filter provides the wall-emulating flee reflex with an invariant

set, the free-space.

3. Do not allow the robot state to cause large, abrupt variations in virtual
sensor output. An example of this is a reflex which causes a full-speed flee
reaction if the robot is confined within a region in the robot state space,
and is inactive everywhere else. The sharp boundary in the state space

can be replaced by a region where the flee response gradually disappears.

11.3 Instability and Cycling Due To Unsuc-

cessfully Integrated Modules in Real-Time

In this case bad dynamic interaction between two or more otherwise stable
modules causes system instability. An example of this is if the interaction
between the reflexive command filter, and the augmented task-space-based
guiding potential functions did not comply with requirement 10.1.

This system has two control modes:

1. The reflexive command filter mode: Higher level commands in form of

goals are given directly to the reflexive command filter.

2. The augmented task-space-based guiding potential function mode: The

236

augmented task-space-based guiding potential function? generates com-

mands which bring the robot around local obstacles.

The system consisting of the reflexive command filter and an augmented task-

space-based guiding potential function is shown in Figure 11.10.

Higher
L evel-Command
in form of a goal

l

Augmented
Task-Space

Based Guiding
Potential Function

Virtual
Switch Control

1. Switch when any
mode is stuck --> Cycling
2. Switch according
requirement 10.1
No Cycling

Reflexive
— Command
Filter

Trajectory
Generator

PD-DD Servo
Controller

Robot

| X robot-state

Figure 11.10: This system consists of an augmented task-space-based guiding
potential function and a reflexive command filter. The switch control strategy
must be chosen carefully.

The original control strategy for the interaction between the reflexive com-
mand filter and the augmented task-space-based guiding potential functions

was :

1. When reflexive command filter fails to bring the robot to the goal, apply

2The augmented task-space coordinates used were: the three work-space coordinates for
the wrist of the RRC robot, and the angle between the elbow of the RRC robot and the
vertical plane through the shoulder and the wrist of the RRC robot

237

augmented task-space-based guiding potential function.

2. When the augmented task-space-based guiding potential function has
brought the robot as far as it can, and the goal has still not been achieved,

give the control back to the reflexive command filter.

In other words this control strategy can be summarized as, when one control
mode fails, switch control mode. This control strategy resulted in cycling for
the following reason. When the reflexive command filter failed to bring the
robot to the goal due to an obstacle, the augmented task-space-based guiding
potential function attempted to bring the robot closer to the goal measured
in augmented task-space coordinates. However, in certain configurations such
moves result in increasing the distance, as measured in joint-coordinates. Un-
der the reflexive command filter control mode, the robot might be brought back
to the configuration where the augmented task-space-based guiding potential
function took over. This situation is illustrated in Figure 11.11.

The solution to this problem was to design a switch control method so
that it complied with requirement 10.1. The new switch control strategy was:
when one control mode fails, switch control mode if this is compatible with
requirement 10.1. To deal with similar situations, requirement 10.1 should be
applied. If that cannot be done easily, the use of multiple Lyapunov functions,

or multiple Quasi Lagrange functions might be of help.

238

Joint-coordinate-2

Joint-coordinate-1

Figure 11.11: The control mode fails, switch control mode strategy might lead
to cycling if the two control modes are described by different energy functions.

11.4 Instability and Cycling Due To Unsuc-
cessfully Integrated Modules in Non-Real-
Time

In this section, the problems related to unfavorable non-real-time interaction
among different modules is discussed. The module interaction problems dis-
cussed here are similar to the ones discussed in Section 11.3 except that the
interaction between the modules is not directly time related. Only the order
in which events happens matters. In other words the modules in the system
are incompatible with each other, regardless of dynamic interaction. For this
reason the corresponding analysis involves logic, or discrete diagrams, rather
than continuous energy measurements like Lyapunov functions.

Examples of this of type of problem are:

239

1. Suppose two reflexes Ryrqct and R,epuse have overlapping activation re-
gions. Reflex R,iq0t attempts to move the robot closer to an interesting
obstacle O, at the same time as reflex R,.puse attempts to keep the robot
away from this obstacle. Reflex R, uise 1s only triggered when the robot is
close to the obstacle and generates thereafter an elongated “flee response”.
Further, reflex R, .p.s has precedence over reflex Rusirqce. When reflex
Rattract moves the robot towards obstacle O, reflex R,cpuse 1s triggered,
and the robot retracts away from the obstacle. When reflex R,¢puise has
moved the robot to a safe distance from obstacle O, reflex R, cpuise 1s
turned off, and reflex R srqct 18 turned on. Reflex R, 4rqc¢ Will move the
robot closer to obstacle O only for reflex R,cpuise to be reinitiated. This
interaction between reflex R,sqc and reflex R, results in cycling.
In other words the way reflex R,strqc¢ and reflex R,.puse are constructed
makes them incompatible with each other. The basic problem in this
example is that the boundary of R,.pus is not compatible with R,pqct-

How to resolve this is described in Section 10.5.

2. The Make-Map module in the sonar-based world mapping system mod-
ule fails to generate temporary obstacle maps for recently investigated
obstacles. When Investigate is done, the robot will remove itself from
the obstacle in an attempt to continue investigating the rest of the work-

space. However, when no map has been created for the obstacle, the

240

obstacle will be rediscovered by the sonar-based world mapping system
as a new inconsistency and the investigation of the obstacle will start all
over again. The robot will therefore engage in cycling. The cycling pat-
tern is not a limit cycle; it is not even a quasi periodic cycle, nor a result
of a strange attractor. In this case the cycling pattern is determined by
constantly changing and unpredictable sensor data. How to analyze this

situation is described in Section 10.6.

3. A world mapping system module A finds a new obstacle, while a second
module B subsequently determines that the obstacle does not exist, and
the obstacle is removed from the map. Module A finds the obstacle again
while module B removes it from the map once again, in a repetitive cycle.
In this case, two modules cannot agree on the existence of an obstacle,

and the system is not structured to solve the conflict.

To ensure stability, the modules must be made compatible with each other.
In sections 10.5 and 10.6 methods for determining inter-module stability are de-
scribed. If the modules are simple or semi-simple reflexes in a non-hierarchical
structure, the methods described in 10.5 can be utilized. In the more general
case, it might be possible to define a progress measurement function, as in the

case for the sonar-based world mapping system.

241

11.5 Design Advice Regarding Reflexive or

Behavioral Systems.

In this section I will first give an overview of the types of modules that a
behavioral robot system can consists of. When constructing a behavioral robot
system it is first necessary to determine what kind of modules are needed in
the system and what the exact function of these modules should be. When this
is done the modules and the interaction between the modules can be analyzed
using the techniques described in Chapter 10. The system can thereafter be
built and tested in a step by step procedure. The next subsection gives an

overview of the modules a behavioral robot system may consist of.

11.5.1 Possible Modules In A Behavioral Robot Sys-
tem.

The robot system architecture which will be discussed in this section is the
structure shown in Figure 11.1. The types of modules this structure consist of

are :

1. Reflexive actions which are by definition implemented in parallel with
the control structure, and which compete for control of the robot. Like
reflexes, they are simple and directly tied to sensory input. The following

are examples of reflexive actions:

(a)

242

Simple containment reflexes are active in a specific region of the state
space, and all commands generated by the reflex are confined to this

region. An example of this is the hold reflex.

Simple repulsor reflexes are active in a specific region of the state

space, but push the robot outside this region.

Triggered reflexes are activated if the robot enters a certain region of
the state space, called the trigger region, and remain active as long
as the robot remains in a certain region of the state space called the
activation region. Triggered containment reflexes generate commands
which keep the robot inside the activation region. Triggered repulsor
reflexes bring the robot outside the activation region. An example of

a triggered repulsor reflex is the flee reflex.

Internal situational reflexes are reflexes which detects certain condi-
tions within the robot system, like which other modules are active,
how fast the robot is moving, etc., and instantly generate the ap-
propriate response. The halt-reflex is an internal situational reflex.
Depending on which module is active, and the confidence threshold

level, it generates a temporary halt.

External situational reflexes are reflexes which detect certain external
conditions, like an approaching obstacle, an approaching human, a

loud noise, etc., and instantly generate the appropriate response.

243

(f) One-shot reflexes are reflexes which detect a certain internal or exter-
nal condition and generate a temporary high-priority response which
disappears even if the stimulus remains. An example of this type of

reflex is the startle reflex.

2. Reflexive command filters which are by definition implemented in series
with the control structure. All higher-level commands must pass through
a reflexive command filter. An example of a reflexive command filter is
the reflexive command filter for obstacle avoidance described in this the-
sis. The reflexive command filter for obstacle avoidance protected the
robot from collision that would result if erroneous higher-level commands
were carried out. In other words, the reflexive command filter for ob-
stacle avoidance prevents collisions resulting from software errors. Other
types of reflexive command filters could prevent obviously incorrect torque
commands, illogical or forbidden actions, or dangerous forces from being

exerted.

3. Fixed action patterns which are extended, largely stereotyped responses
to sensory stimuli. Fixed action patterns are similar to reflexes in the
sense that they are simple responses. However, they are extended re-
sponses which generate an action pattern which continues to exist long
after the stimulus has dissapeared. An exampleis Investigate in the sonar-

based world mapping system. Investigate moves the robot tool flange up

244

and down and around a found obstacle in a largely stereotyped manner.
It should be noted that fixed action patterns do not contain any complex

algorithms, planning, or advanced perception.

4. Higher level modules containing complex algorithms, planning, or ad-
vanced perception. A higher-level module can exists in the form of com-
mand filters. An example of this is a path-planner which generates paths
to underlying levels from all higher-level commands. A path-planner can

also be a module which is activated only in certain situations.

11.5.2 A Step By Step Procedure For Constructing A
Robotic Behavioral System

The following is a suggested procedure for constructing a behavioral system,

assuming that the servo-controller already exists:

1. State the purpose of your system, and all functions you would like your
system to have. Generate a modular system similar to the one shown in

Figure 11.1, which would theoretically achieve the purpose of the system.

2. Identify the detailed interaction among the modules, and define the func-

tion of each module’s virtual sensor and active component.

245

3. Identify the detailed function of each module, and its corresponding vir-
tual sensor and active component. Analyze the stability of each mod-
ule using Lyapunov functions, the invariant set theorem, Quasi Lagrange
functions, or an other method. If a module cannot be proven to be stable,

redesign it.

4. Analyze the stability and performance of the feedback loop containing the
active component of each module, the servo-controller, trajectory genera-
tor and the robot. This can be done by utilizing Lyapunov functions, the
invariant set theorem, Quasi Lagrange functions, or any other method. If

this feedback loop cannot be proven to be stable, redesign it.

5. Analyze the stability and performance of the feedback loop containing the
virtual sensor of each module, the servo-controller, trajectory generator
and the robot. This can be done by utilizing Lyapunov functions, the
invariant set theorem, Quasi Lagrange functions, or any other method. If

this feedback loop cannot be proven to be stable, redesign it.

6. Using the argument concerning inner and outer loops in Section 11.2,
determine wheather it is plausible that the combined feedback loops are
stable. If not analyze the combined system consisting of both feedback

loops.

246

7. Analyze the interaction among all modules at the same level using mul-
tiple Lyapunov functions, multiple Quasi Lagrange functions, or progress
measurement functions. If the modules are simple-containment reflexes,
triggered-containment reflexes, or simple-repulsor reflexes, use the method-
ology developed in Section 10.5 to analyze the module interaction. Re-
design the module interaction if the system cannot be shown to be stable

or to perform well.

8. Build each individual module, test it by itself, and in a feedback loop
containing the servo-controller and the robot. Determine that the module
is stable and performs well both in feedback and by itself. If not, debug

the module and if necessary redesign it.

9. Integrate the system, test it, and determine that the system is stable and
performs well. If the system does not perform well, debug or redesign
the interaction between the modules, and if necessary, redesign the entire
system. If the latter has to be done you might have to restart the design

procedure at step 1.

If each step is done very carefully and the stability analysis in step 3—7
is properly done, it should not be necessary to restart the design procedure

when step 9 has been reached.

247

11.6 Final Conclusions and Overview for Chap-

ter 11

This chapter gave an overview of the stability and cycling problems I encoun-
tered during my experiments. This chapter provided qualitative advice on how
to construct reflex modules, and how to design systems containing interacting
behavioral modules.

The stability and performance problems I encountered during my experi-

ments were of the following types:

1. One module, or a set of interacting modules, is badly designed and there-
fore behaves unstable in open loop. An illustratation of the locality of
these types of problems in the pine-tree structure is made in Figure 11.2.
The reasons why individual behavioral modules are unstable are, for ex-
ample, that the basic module design is flawed, or that the computer pro-
gram implementing the module contains bugs. The stability of a single
module can be analyzed using Lyapunov functions, the local set invariant

theorem, or Quasi Lagrange functions.

2. One or more modules are unstable in their respective feedback loop. This
is illustrated in Figure 11.3. Instability can appear due to the active
components dependency on the robot state, as well as the virtual sen-

sors dependency on the robot state. This situation can be analyzed by

248

analyzing the individual feedback loops, or if possible, the combined sys-
tem. If the difference in bandwidth between successive loop closures is
an order of a magnitude, it is likely that the two feedback loop systems
can be analyzed separately. If there is an instability problem generated
in the feedback loop from the robot output to the active component of
the reflex module, this can usually be solved by entirely eliminating the
feedback loop. If there is an instability problem generated in the feedback
loop from the robot output to the virtual sensor this can be solved by

regulating how the virtual sensor is activated.

3. Real-time interaction problems among the modules. This is illustrated in
Figure 11.4. A solution to these problems is to design a switch control

method which complies with requirement 10.1.

4. Non-real-time interaction problems among the modules. This could also
be illustrated by Figure 11.4. If the modules are simple or semi-simple
reflexes in a non-hierarchical structure the methods described in 10.5 can
be utilized to analyze this situation. It might also be possible to define a

progress measurement function which is useful for analysis.

Section 11.5 gave an overview of a formal procedure for constructing be-
havioral systems. This procedure is very general and does not provide any

extensive revealing information by itself. However, in conjunction with the

249

methods discussed and given in Chapter 10 and the experience expressed in

this chapter this procedure can serve as a guide-line for future system design.

Chapter 12

Conclusions and Suggestions for Further

Work

This chapter will give a very brief overview of the content of this thesis, discuss
the results with respect to the thesis objective, and present a few conclsuions.
This chapter will also present a few suggestions for further work in reflex-like
control systems. It is my hope that others will find find this area of research

interesting and valuable and pursue similar research.

12.1 Summary and conclusions

This thesis has presented a survey of my work in reflex-based robot control.
The appeal to reflex-like, stimulus-response behaviors is that a machine thus
controlled can be more robust with respect to unanticipated events. Most
commonly, unanticipated situations are considered from the context of unpre-
dictable environment stimuli. Another likely source of unanticipated events
is internal—due to embedded software errors in the controller itself. Using

reflexive behaviors, we can “trap” potentially destructive errors, e.g. with

250

251

reflexive collision avoidance.

The premise of reflex control is that one should create low-level behav-
iors that are ordinarily inactive or virtually “transparent” with respect to
higher-level commands. However, these behaviors should trigger rapidly to
perform protective responses when there is indication that the host machine
is in danger. By design, the reflex layer is not “intelligent” by any reasonable
measure. Rather, reflex actions consist of fixed relationships between stimulus
and response; no learning or deductive analysis takes place. Nonetheless, the
response executed by a reflex is typically appropriate to an emergency condi-
tion. Thus, reflexes trade off sophistication of analysis for speed of response.

Using a “reflexive command filter” the robot is prevented from colliding
with itself (including joint limits) or with known objects in its environment.
This behavior is like a filter, in that its protective action occurs by refusing to
approve commands which advance the robot into danger. The addition of the
reflexive command filter permits appropriate and timely protective responses,
and this additional robustness is obtained without sacrificing the performance
of the rest of the system.

It was found that the path-planning task was simplified by the assumption
that the lower-level reflexive command filter would guarantee collision avoid-

ance. With this assumption, the path planner could consider lower-resolution

252

maps and coarser approximations of robot dynamics, leaving execution refine-
ments to the reflexes.

In addition, I presented more proactive low-level behaviors, including the
“startle” and “retraction” and “hold” reflexes, in the case of multi-arm collision
avoidance. The existence of the flee reflex permitted a dramatically simpler
implementation of higher-level cooperative controls. Both the wall-emulating
and block emulating flee reflexes executes rapidly and are functionally simple,
and are therefore practical implementations of multi-arm collision avoidance.

This thesis also discussed fixed action patterns, which are behaviors similar
to reflexes in the sense that they were low-level, but different in the sense that
the corresponding output was not directly tied to the input. Reflex modules,
and fixed action patterns were used to build a system which performed au-
tonomous map building using sonar sensors. This demonstrates that reflex-like
control and fixed action patterns can be used to build complex autonomous
systems which performs complex tasks. The resulting system was modular,
flexible, and could be incrementally expanded which is another characteristica
of reflex-like or behavioral systems.

All systems and modules described in this thesis were implemented and
tested on an industrial manipulator. Each module represented an individual
behavior, and was shown to be compatible with command generation from

higher-levels. Fven though it is possible to build complex systems using reflex

253

modules and other low-level behavioral modules, the main purpose of the
reflex approach is not to replace sophisticated planners or other higher-levels
of cognition. Rather, the reflexes augment a complex system by enhancing
its robustness with respect to unanticipated events; further, low-level reflexes
simplifies the task of designing higher levels of cognition. The existence of
additional reflex behaviors could have similar simplifying effects on the design
of higher-level controls.

In this thesis the usefulness of several standard methods for stability and
performance analysis was discussed. Further, this thesis introduced a few new
methods specifically designed for analysis of behavioral systems. The con-
cept of stability in the sense of Lyapunov was discussed and implemented on
the static command filter and the guiding potential functions. The interaction
between the static command filter and the guiding potential functions was ana-
lyzed using global Lyapunov functions, and multiple Lyapunov functions. The
invariant set theorem was succesfully used to show that the wall-emulating flee
reflexes, and the block-emulating flee reflexes resulted in the robot converging
to free-space.

The concept of Quasi Lagrange stability was introduced so that the flee
reflexes could be analyzed in terms of stability. Stability and convergence
analysis applied to the output vectors of higher-level modules was validated

using the concept of command-tolerant stability. Methods for analyzing the

254

the interactions between simple-containment, and triggered-containment and
repulsor reflexes were introduced and discussed. In section 10.6, progress mea-
surement functions were used to analyze the performance of the sonar-based
world mapping system.

The concepts discussed and introduced in this thesis were applied to the
reflexes and behavioral modules I constructed. It was demonstrated that Lya-
punov functions, multiple Lyapunov functions, the set-invariant theorem, and
(Quasi) Lagrange stability concepts, are useful concepts for real time analy-
sis of behavioral systems. The new concepts introduced were also shown to
be useful. The stability and performance problems I encountered during my
experiments were discussed, and advice regarding how to avoid and deal with
such problems were given. A general design method for behavioral systems
was also presented.

This thesis presented different implementations of reflex-like and behavioral
control methods. These implementations demonstrated that reflex control is
a useful concept for achieving robot system safety, reliability and robustness.
They also demonstrate that reflex control can be used as an important compo-
nent of complex autonomous systems. This thesis also discussed how reflexes
should be constructed to be useful, and how stability or cycling problems could

be avoided when adding reflex modules to the system.

255

12.2 Further Work

One obvious extension to the work presented here is the improvement, or the

extension of the modules presented here. Examples of such improvements are:

1. In the reflexive command filter for obstacle avoidance, add a submodule to
the C-space inspector which generates local C-space, using the template
method and a list of nearby obstacles and their obstacle features. This

can be used for higher resolution C-space of in higher dimensions.

2. In the reflexive command filter for obstacle avoidance, add a submodule

to the C-space inspector which generates local C-space, using a Jacobian-

based method.

3. Apply the reflexive command filter to work-space using distance measure-
ments instead of using C-space. This would especially be useful for highly

redundant robots.

4. Use the reflexive command filter in conjunction with better path planners
which are truly subgoal based, irrespective of the dimensionality of the

C-space.

5. Improve the flee reflexes, or invent new flee reflex concepts.

6. Extend, redesign, or improve the sonar-based world mapping system to

become even more general, efficient, and perhaps more modular.

256

7. Improve the sonar-data-based map-generation process to conform to the

most efficient and complete methods in existence.

8. Make a template-based C-space generator which is more efficient, or in-

cludes more obstacle features, or operates in higher dimensionality.

9. Make a general template-based C-space generator for arbitrary robots.
The C-space generator first generates the necessary feature databases af-
ter it has been given information about the robot. The necessary robot
information the C-space generator needs is a CAD/CAM description of
the robot links and a description of the robot’s configuration (DH param-

eters).

Another obvious extension to the work presented here is the development
of additional reflexive and behavioral modules for other purposes than obsta-
cle avoidance and sonar-based world mapping. Examples of such potential

modules are:

1. Reflexive command filters for compliant control. These reflexive com-
mand filters would remove all commands that would result in excessive
forces, unfeasible stiffness and damping, or forces and velocities which are

undesirable in the context of the current system and environment.

2. Reflexive command filters for velocity, torque, voltage or current com-

mands that could result in system damage. Such a filter would check

257

that system software (a servo-controller) never generates, for example,

PWDM-signals that could destroy a servo-amplifier.

. Reflexive command filters which would protect the system from com-
mands that obviously are incorrect in a certain context. For example, at
start up a huge step command is probably a result of an incorrect po-
sition command, or a position command which incorrectly remains from
an earlier batch. Another example is a reflexive command filter which
prevents the robot from picking up a piece in a bin while moving at a
high speed. If a higher module generates this type of command it must

result from a software error.

. Reflexive actions, or fixed action patterns that are submodules in certain
action schemes for robot walking, robot gripping, robot climbing, robot

jumping, etc.

. Reflexive actions which act as transition modules when switching control
mode in the case of, for example, a walking robot which slips, steps in a

hole, etc..

. Reflexive actions for numerous special tasks like:

(a) Autonomous car, or mobile robot path following.

(b) Autonomous car, mobile robot, or industrial robot collision avoid-

ance.

258

(c) Unexpected events like a walking robot slipping, or stepping in a hole,

or a mobile robot reaching a steep edge or an overly narrow corridor.

Improvements and generalizations can also be made to the analysis pre-

sented in Chapter 10 and 11. These improvements include:

1. The application of the methods described in Chapter 10 and 11 to a larger

set of practical examples.

2. A more rigorous or general description of the methods applied in Chapter

10 and 11.

3. The implementation of standard methods not mentioned in Chapter 10

and 11 for analysis of reflexive and behavioral systems.

4. The development of new methods useful for analyzing reflexive and be-

havioral systems.

5. The development of a more detailed and practical design scheme than the

one described in section 11.5.

Most research efforts within robotics have been concentrated on:

e Servo-controllers, trajectory generators, kinematics, dynamics, calibra-
tion, position-control, velocity-control, force-control, compliant-control,

and other low-level applications. This research has been beneficial to

259

the industry which has been able to improve the speed and accuracy of

industrial robots.

e Path-planners, perception modules, map-generators, C-space generation
methods, task-planning, artificial intelligence, and other high-level appli-
cations. This research has been beneficial to certain applications within
the research community and special applications like, waste cleanup us-
ing robots, space exploration, etc.. However, this type of research has to

large extent failed to increase the autonomy and employability of robots.

In this context, I believe that reflexes and other low-level behaviors repre-
sent the forgotten middle layer. This thesis has demonstrated that this middle
layer could serve as a means to connect high-level controls with low-level con-
trols. 1 believe that in the long run, this will result in the construction of
advanced, flexible, robust, and autonomous robot system that, to a much
larger extent, could replace human laborers, do things which currently cannot

be done, and assist in solving problems which currently do not have a solution.

Appendix A

Kinematic model for the RRC

This appendix describes the kinematics of the RRC robot. The joint coor-
dinate systems I chose are given in Figure A.1', and the corresponding DH-
parameters are shown Table A.1. The values of §; in the configuration shown

are given in Table A.2.

XZ

Floor

Figure A.1: The joint coordinate systems of the RRC robot and the corre-
sponding parameters.

! Also given in section 2.2

260

261

Joint (92 (673 dZ a;
1 6,1 90° | 0| O
O, | 90° | 0 | a2

2
3 O3 | —90° | d3 | a3
4 04 90° | O |a4d

Table A.1: DH-parameters for the RRC robot.

6, =0°
0, = 90°
03 = 0°
04 = 90°

Table A.2: The home angles of the RRC robot

Equation A.1 below give the transformation matrix from the base frame to
the world frame, and equations A.2, A.3, A.4, and A.5 gives the transforma-
tion matrices for the first four joint frames. The resulting joint-4 frame to base
frame transformation matrix is given in equation A.6, and the resulting joint-4
frame to world frame transformation matrix is given in equation A.7. Equation
A.8 shows the transformation matrix from joint-6 to joint-4. The transforma-
tion matrices shown are used to compute configuration space, robot tool and
elbow locations, potential functions, and the configurations corresponding to

desired sonar beam directions.

0 0 10
0 -1 00
1 0 00
0 0 01

cos(03)

sin(6s)

cos(0y4)

stn(6y)

cos(61) 0 sin(6,) 0

sin(61) 0 —cos(fy) 0

262

0 sin(fy) a2cos(fs)
0 —cos(f2) a2sin(6s)
1 0 0

0 0 1

0 —sin(f3) a3cos(fs)

0 cos(f3) a3sin(6s)

-1 0 d3

0 0 1

0 sin(fs) adcos(6s)
0 —cos(0s) adsin(fy)
1 0 0

0 0 1

(A.3)

(A.5)

cos(B1)cos(Bg)cos(B3)cos(Bq)
+sin(61)sin(Bz)cos(by)

—cos(01)sin(bz)sin(6y)

sin(01)cos(6y)cos(63)cos(6y)
—cos(01)sin(63)cos(6q)—

sin(Bq)sin(By)sin(6y)

sin(0)cos(63)cos(6y)

+cos(B3)sin(6q)

263

sin(6q)cos(B3)—

cos(B1)cos(By)sin(B3)

—sin(Bq)cos(Bz)sin(b3)

—cos(01)cos(03)

—sin(By)sin(B3)

944 —

cos(01)cos(Bg)cos(03)sin(by)
+sin(61)sin(03)sin(6q)+

cos(B1)sin(by)cos(y)

sin(01)cos(bz)cos(03)sin(6y)
—cos(B1)sin(63)sin(6y)

+sin(6q)sin(By)cos(8y)

sin(6y)cos(63)sin(0y)

—cos(B3)cos(8y)

ad(sin(By)sin(0s)cos(64)+
cos(B7)cos(8a)cos(83)cos(8q)
—cos(61)sin(62)sin(64))+
a3(sin(6y)sin(63)+
cos(81)cos(B2)cos(63))+
d3cos(87)sin(6z)+

a2cos(6q)cos(83)

at(—cos(87)sin(B3)cos(64)+
sin(61)cos(82)cos(83)cos(64)
—sin(01)sin(02)sin(6))—
a3(cos(81)sin(6z)—
sin(61)cos(82)cos(03))+
d3sin(61)sin(6g)+

a2sin(6q)cos(63)

a4(sin(By)cos(B3)cos(By)
+cos(B3)sin(64))+
a3sin(Bg)cos(03)—

d3cos(83) + a2sin(63)

(A.6)

sin(Bg)cos(B3)cos(By)

+cos(B3)sin(6q)

cos(Bq)sin(B3)cos(64)—
sin(Bq)cos(By)cos(B3)cos(By)

+sin(Bq1)sin(0y)sin(6y)

cos(61)cos(by)cos(B3)cos(By)
+sin(61)sin(B3)cos(y)

—cos(B0q)sin(bz)sin(0y)

cos(0s)cos(0e)

sin(0s)cos(s)

264

—sin(fy)sin(O3)

sin(601)cos(6y)sin(63)

+cos(61)cos(63)

sin(01)cos(63)—

cos(B1)cos(By)sin(63)

—sin(fs) cos(8s)sin(fs) abcos(bs)cos(bs) + adsin(fs)

cos(s)

%4:

sin(Bg)cos(B3)sin(By)

—cos(f3)cos(8y)

cos(B1)sin(63)sin(0y)—
sin(Bq)cos(Bgy)cos(B3)sin(By)

—sin(61)sin(By)cos(8y)

cos(B1)cos(Bg)cos(B3)sin(By)
+sin(61)sin(Pz)sin(64)+

cos(Bq)sin(By)cos(6yq)

cos(0s)sin(bs) absin(ds)cos(bs) + adcos(bs)

a4(sin(6z)cos(b3)cos(By)
+cos(B3)sin(64))+
alsin(fy)cos(f3)—

d3cos(03) + a2sin(6y)

ad(cos(67)sin(B3)cos(8y)—
sin(61)cos(8a)cos(83)cos(8q)
+sin(6)sin(62)sin(64))+
a3(cos(61)sin(B3)—
sin(67)cos(By)cos(83))—
d3sin(6q)sin(fy)—

a2sin(6q)cos(63)

ad(cos(81)cos(Ba)cos(83)cos(84)
+sin(61)sin(63)cos(64)—
—cos(61)sin(02)sin(64))+
a3(sin(61)sin(63)+
cos(81)cos(By)cos(83))+
d3cos(67)sin(n)+

a2cos(6q)cos(63)

(A7)

—sin(fs) 0 cos(bs) d5 — absin(fe)

0 0 0 1
(A.8)

265

The Manipulator Jacobian 6% = J5§, or J = g—gj, is used for the flee reflexes
described in Chapter 8 and the ultrasound-based world mapping system de-
scribed in Chapter 9. The Jacobian is calculated with respect to points located
in link-2 and link-4, in other words located in the upper and lower manipulator
arm. The Jacobian matrices for link-2 and link-4 are given in Equations A.9

and A.10 respectively. P2 and P4 denotes points located on the Z; and the

74 axis respectively.

0 P2sin(03) 4+ a2cos(03) — P2cos(0y)sin(6y)—

a2cos(6y)cos(0z)

a2sin(bq)sin(fz) — P2sin(6q)cos(0)

— P2sin(601)sin(62) — a2sin(8y)cos(8s) P2cos(61)cos(8) — a2cos(6y)sin(6)
(A.9)

2,1

4
Ja1

Ty

Where J;{l, J3

11,11, 15,15, Ty are given below.
k)

Pa(sin(0g)cos(0y)+
cos(83)cos(83)sin(64))
+ad(—sin(8g sin(6y)+
cos(83)cos(83)cos(64))
+a3cos(62)cos(63)+

a2cos(By) + d3sin(6y)

— Pa(sin(6])cos(By)cos(6q)—
sin(61)sin(62)cos(63)sin(64))
Fad(sin(61)cos(y)sin(8g)+
sin(1)sin(6)cos(03)cos(6g))
tadsin(61)sin(fy)cos(83)+
a2sin(6y)sin(8g)—

d3cos(01)sin(6z)

Pa(cos(61)cos(6)cos(8y)—
cos(01)sin(62)cos(63)sin(64))
—ad(cos(6])cos(0y)sin(Bg)+
cos(87)sin(0y)sin(63)cos(84))
—a3cos(0])sin(6y)cos(3)—
a2cos(07)sin(6y)+

d3cos(61)cos(63)

T

266

Tt =

—P4sin(6g)sin(63)sin(6y)

—a4sin(fy)cos(B3)cos(By)

—a3sin(fy)sin(03)

Pa(sin(61)cos(6)
sin(B3)sin(04)+
cos(87)cos(03)sin(6y))
+ad(sin(61)cos(6)
sin(3)cos(6q)+
sin(61)cos(02)sin(64))
+a3(cos(1)cos(83)+

sin(6q)cos(By)sin(63))

— Pi(cos(87)cos(6z)
sin(63)sin(0q)
+sin(61)cos(63)sin(6y))
—a4((cos(B1)cos(By)
sin(83)cos(84)
sin(61)cos(63)sin(64))
+a3(sin(1)cos(63)—

cos(B1)cos(b3)sin(03))

T3

P4(cos(62)sin(64)+
sin(Bg)cos(B3)cos(By))
+a4(cos(92)cos(94)—

sin(Bg)cos(B3)sin(6q))

Pa(cos(8y)sin(03)cos(0a)+
sin(6q)sin(62)sin(64)—
sin(61)cos(62)cos(63)cos(64))
tad(sin(8y)sin(6g)cos(64)—
cos(61)sin(63)sin(64)+

sin(Bq)cos(By)cos(B3)sin(by))

Pa(sin(61)sin(63)cos(8q)+
cos(81)cos(8a)cos(83)cos(8s)
—cos(61)sin(02)sin(64))—
ad(sin(6y)sin(8a)sin(6g)+
cos(1)cos(y)cos(83) sin(8s)

—cos(81)sin(6y)cos(64))

Ty

(A.10)

267

Jy1 = —P4(sin(61)sin(03)sin(0s) + cos(01)sin(0z)cos(0s) +
cos(0y)cos(03)cos(03)sin(04)) + ad(cos(y)sin(0s)sin(0s) —
cos(6y)cos(03)cos(B3)cos(0s) — sin(by)sin(fs)cos(6,))
—a3(sin(0y)sin(bs) + cos(6)cos(82)cos(83)) +

a2cos(61)cos(02)d3cos(6;)sin(0z)

Ji = P4(cos(6y)sin(0s)sin(0s) — sin(0y)sin(0y)cos(6s) —
sin(y)cos(0;)cos(03)sin(6s)) — ad(cos(0y)sin(0s)cos(0s) +
sin(0y)sin(02)sin(04) — sin(0y)cos(02)cos(03)cos(04))
+a3(sin(0y)cos(0y)cos(03) — cos(0)sin(bs)) —

a2sin(0y)cos(8sy) — d3sin(fy)sin(0z)

(WyE, + W E, —W,E, —W_E)E, + (W,E, — W, E,)E]

T, =
E.E, + (W,E, — W,E,)?
T_(m@+w&—m@—wmm+MWFWﬁmg
2T E.E, + (W,E, — W,E,)?
T_(%@+W&—MQ—W&%+WMNWMMB
S E.E, + (W,E, — W,E,)?
n:(m@+w&—m@—m@m+mwfwwmx

E.E, + (W, E, — W,E,)?
Where W = (W, Wy, W.,) is the location of the wrist (frame-5) with respect

to the world coordinate system, and E = (E., Ey, E.)is the location of the

268

elbow (frame-3) with respect to the world coordinate system. W, VV;, W! and

Et, E;, E? are the differentials of the wrist and elbow coordinates with respect

to the joint angle ;. The world coordinates for the elbow and the wrist are

listed below.

W,
W,

W,

E2
E3

E4

a2cos(0y) — d3cos(fy)
—d3sin(0y)sin(0) — a2sin(6;)cos(6,)
d3cos(0:)sin(0s) + a2cos(f;)cos(0s)
WAL(1,2)W., + "A4(1,3)
WAL(2,2)W,, + WA4(2,3)
WAL(3,2)W., + "A4(3,3)

0

—a2sin(0y) — d3cos(6y)

0

—d3cos(0y)sin(6y) — a2cos(61)cos(6s)
—d3sin(b1)cos(02) + a2sin(6)sin(6s)

0

(A.11)

269

E! = —d3sin(0)sin(0y) — a2sin(;)cos(bs)

E? = d3cos(0:)cos(0y) + a2cos(6)sin(b,)

Wl = J;{l (W.,)

T

W? = J;"z (W.,)

T

wW? = J;B(VVQ)

T

Wi = J;A(VVZ‘;)

xr

wW? = J;73 (W.,)
Wi = J; JW2)
w! = J;{l (W.,)

z

W2 = nyz(VVz,*)

z

W? = ijg(W/Z‘i)

z

z

wh = JfA(VVZ,*)

(A.12)

Where W,, is the constant corresponding to the location of the wrist on

the z-axis of the frame-4 system, and J3;(W.,) is the Jacobian with respect

270

to the point W, on the frame-4 z-axis.

Bibliography

1]

2]

3]

[10]

Anderson, T. L. and Donath, M., “Animal behavior as a paradigm for
Developing Robot Autonomy,” International journal of robotics and au-
tonomus systems, 6:145-168, June 1990.

Andrews, J. R. and Hogan, N., “Impedance Control as a Framework for
Implementing Obstacle Avoidance in a Manipulator,” Control of Manu-

facturing Processes and Robotic Systems, 243-251, 1983.

Avnaim, F.; Boissonnat, J., and Faverjon, B., “A Practical Exact Motion
Planning Algorithm for Polygonal Objects Amidst Polygonal Obstacles,”
Technical Report 890, INRIA, Sophia—Antipolis, France, 1988.

Barraquand, J. and Latombe, J., “Robot Motion Planning: A Distributed
Representation Approach,” Technical Report STAN-CS-89-1257, Depart-
ment of Computer Science, Stanford University, 1989.

Beckerman, M. and Oblow, E. M., “Treatment of Systematic Errors in
the Processing of Wide-Angle Sonar Sensor Data for Robotic Naviga-
tion,” IEEE Transactions on Robotics and Automation, 6(2):137-145,
April 1990.

Beer, R. D., Chiel, H. J., and Sterling, L. S., “A biological perspective on
Autonomus Agent Design,” International journal of robotics and autono-
mus systems, 6:169-186, June 1990.

Beer, R. D., Chiel, H. J., Quinn, R. D.,; and Larsson, P., “A Distributed
Neural Network Architechture for Hexapod Robot Locomotion,” in Neural
Computation, Brooks, R., editor, pages 356-365, Massachusetts Institute
of Technology, 1992.

Bekey, G. and Tomovic, R., “Robot Control by Reflex Actions,” in
Proceedings of International Conference on Robotics and Automation,

pages 240-247, April 1986.

Branicky, M. S., Efficient Configuration Space Transforms for Real-Time
Robotic Reflexes. Master’s thesis, Case Western Reserve University, De-
partment of Electrical Engineering and Applied Physics, February 1990.

Branicky, M. S., “Stability of Switched and Hybrid Systems,” Tech.
Report LIDS-P-2214, Lab. for Information and Decision Systems, Mas-
sachussetts Institiute of Technology, Boston, MA, November 1993.

271

272

[11] Branicky, M. S. and Newman, W. S.; “Rapid Computation of Configu-
ration Space Obstacles,” in Proceedings of International Conference on
Robotics and Automation, pages 304-310, May 1990.

[12] Brooks, R., “Elephants Don’t Play Chess,” International journal of
robotics and autonomus systems, 6:3—15, June 1990.

[13] Brooks, R., “A Robust Layered Control System for a Mobile Robot,”
IEEFE Journal of Robotics and Automation, RA-2:14, March 1986.

[14] Brooks, R., “Solving the Find-Path Problem by Good Representation
of Free Space,” IEEFE Transactions on Systems, Man and Cybernetics,
13(3):190-197, 1983.

[15] Brooks, R. A., “A Hardware Retargetable Distributed Layered Architech-
ture for Mobile Robot Control,” in Proceedings of International Confer-
ence on Robotics and Automation, pages 106-110, April 1987.

[16] Burroughs, M., “Inhibitory Interactions Between Spiking and Non Spik-
ing Local Intern Neurons in the Locust,” The Journal of Neuroscience,

7(10):3282-3292, October 1987.

[17] Burroughs, M., “Organization of Receptive Fields of Spiking Local Intern
Neurons in the Locust with Input from Hair Afferents,” The Journal of
Neurophysiology, 53(5):1147-1156, May 1985.

[18] Burroughs, M., “The processing of Mechanosensory Information by Spik-
ing local Neurons in the Locust,” The Journal of Neurophysiology,
54(3):463-477, September 1985.

[19] Burroughs, M., “Proprioceptive Inputs to Nonspiking Local Intern neu-
rons contribute to Local reflexes of the Locust Hindleg,” The Journal of

Neuroscience, 8(8):, August 1988.

[20] Burrows, M. and Laurent, G., The Computing Neuron, chapter Reflex
Circuits and the Control of Movement, page .

[21] Burrows, M. and Laurent, G., “Reflex Circuits and the Control of Move-
ment,” in The computing neuron, Durbin, R., Miall, C., and Mitchison,
G., editors, chapter 13, pages 244-261, Addison-Wesley Publishing Com-
pany, 1989.

[22] Canny, J. The Complezity of Robot Motion Planning. The MIT Press,
Cambridge, Massachussets, 1988.

[23] Canny, J., “A New Algebraic Method for Robot Motion Planning and
Real Geometry,” in Proceedings of International Conference on Robotics
and Automation, pages 808-813, April 1988.

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

33]

273

Capek, K., “Rossum’s Universal Robot,” English version by P. Selver and
N. Playfair. New York: Doubleday, Page and Company, 1923.

Chen, P. and Hwang, Y., “SANDROS: A Motion Planner with Perfor-
mance Proportional to Task Difficulty,” in Proceedings of International
Conference on Robotics and Automation, pages 2346-2353, May 1992.

Chiel, H. J., Beer, R. D., Quinn, R. D., and Espenschied, K. S., “Robust-
ness of a Distributed Neural Network Controller for Locomotion in a Hexa-
pod Robot,” IEEE Transactions on Robotics and Automation, 8(3):293—
303, June 1992.

Donald, B., Error Detection and Recovery in Robotics. Springer-Verlag,
1989.

Faverjon, B. and Tournassoud, P., “A Local Approach for Path Plan-
ning of Manipulators with a High Number of Degrees of Freedom,” in
Proceedings of International Conference on Robotics and Automation,

pages 1152-1159, April 1987.
Flynn, A. and Brooks, R., “MIT Mobile Robots What’s Next?,” in

Proceedings of International Conference on Robotics and Automation,

pages 611-617, April 1988.

Flynn, A., Brooks, R., Wells, W., and Barret, D., “Intelligence for Minia-
ture Robots,” Sensors and Actuators, 20:187-196, 1989.

Hahn, W., Theory and Application of Liapunovs Direct Method, chap-
ter Generalizations of the Concept of Stability, pages 129-150. Prentice—
Hall, Inc., Englewood Cliffs, New Jersey 07632, 1963.

Hogan, N., “Impedance Control: An Approach to Manipulation: Part I1I-
Applicaitions,” Journal of Dynamic Systems Measurement, and Control,

107:17-24, March 1985.

Hwang, Y. H., “Boundary Equations of Configuration Obstacles for Ma-
nipulators,” in Proceedings of International Conference on Robotics and

Automation, pages 298-303, May 1990.

Hwang, Y. and Ahuja, N., “Gross Motion Planning—A Survey,” ACM
computing surveys, 24(3):219-291, September 1992.

Kaelbling, L. and Rosenschein, S., “Action and Planning in Embedded
Agents,” International Journal of Robotics and Autonomous Systems,

6(1-2):35-48, June 1990.

[36]

[37]

[38]

[39]

[40]

[43]

[44]

[45]

[46]

[47]

274

Khatib, O., “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots,” Journal of Robotics Research, 5(5):90-98, Spring 1986.

Khatib, O. and Mampey, L. Fonction decision-commande dun robot ma-

nipulateur. Rep. 2/7156 DERA/CERT, Toulouse, France, 1978.

Koditschek, D. E., “Exact Robot Navigation by Means of Potential Func-
tions,” in Proceedings of International Conference on Robotics and Au-
tomation, pages 1-6, April 1987.

Krishnaswamy, V. K., On-Line Motion Planning in three dimensional
Configuration Space for a Robotic Manipulator. Master’s thesis, Case
Western Reserve University, Department of Electrical Engineering and

Applied Physics, October 1990.

Krishnaswamy, V. K. and Newman, W. S., “On-Line Collision Motion
Planning Using Critical Point Graphs in Two-dimensional Configuration

Space,” in Proceedings of International Conference on Robotics and Au-
tomation, pages 2334-2339, May 1992.

Krogh, B., “A Generalized Potential Field Approach to Obstacle Avoid-
ance Control,” in SME Conf. Proc. Robotics Research: The Next Five
Years and Beyond, page , August 1984.

LaSalle, J. P., “Some Extensions of Liapunov’s Second Method.,” IRFE
Transactions profess.group.circuit theory, CT-7:520-527, 1960.

Latombe, J., Robot Motion Planning. A Kluwer Academic Publishers
series, Kluwer Academic Publishers, Boston, 1986.

Lewis, C. L. and Maciejewski, A. A., “Optimization of the Dynamic Per-
formance of Redundant Robots in the Presence of Faults,” in Fourth In-
ternational Symposium on Robotics and Manufacturing, pages 279-284,
November 1992.

Lozano-Pérez, T., “Automatic Planning of Manipulator Transfer Move-
ments,” IEFFEE Transactions on Systems, Man, and Cybernetics, SMC-
11(10):681-698, October 1981.

Lozano-Pérez, T., “Spatial Planning: a Configuration Space Approach,”
IEEE Trans. on Computers, C-32(2):108-120, February 1983.

Lozano-Pérez, T. and Wesley, M., “An Algorithm for Planning Collision-
Free Paths Among Polyhedral Obstacles,” Communications of the ACM,
22(10):560-570, October 1979.

275

[48] M. L. Visinsky, J. C. and Walker, I. D., “Expert System Framework for

" in Fourth International

Fault Detection and Fault Tolerance in Robotics,’
Symposium on Robotics and Manufacturing, pages 793-800, November

1992.
[49] Maciejewski, A. A., “The Design and Control of Fault Tolerant Robots for

Use in Hazardous or Remote Environments,” in Proceedings of the fourth

American Nuclear Society Topological Meeting on Robotics and Remote
Systems, pages 633-642, February 1991.

[50] Maciejewski, A. A.; “Fault Tolerant Properties of Kinematically Re-
dundant Manipulators,” in Proceedings of International Conference on
Robotics and Automation, pages 638-642, May 1990.

[51] Maes, P., “Situated Agents Can Have Goals,” International Journal of
Robotics and Autonomous Systems, 6(1-2):49-70, June 1990.

[52] Miyazaki, F. and Arimoto, S., “Sensory Feedback Based on the Artificial
Potential for Robots,” in Proceedings of the 9th Triannual World Congress
of International Factory Automation, pages 2381-2386, July 1984.

[53] Moon, F. C., Chaotic and Fractal Dynamics, an introduction for applied
scientists and engineers. John Wiley and Sons, Inc, New York, NY, 1992.

[54] Newman, W. S., “Automatic Obstacle Avoidance at High Speeds via Re-
flex Control,” in Proceedings of International Conference on Robotics and
Automation, pages 1104-1109, May 1989.

[55] Newman, W. S., “High Speed Robot Control and Obstacle Avoidance Us-
ing Dynamic Potential Functions,” in Proceedings of International Con-
ference on Robotics and Automation, pages 14-24, April 1987.

[56] Newman, W. S., High Speed Robot Control in Complex Environments.
PhD thesis, Massachusetts Institute of Technology, Department of Me-
chanical Engineering, October 1987.

[57] Newman, W. S. and Branicky, M. S., “Experiments in Reflex Control for
Industrial Manipulators,” Report TR-89-153, Center for Automation and
Intelligent Systems Research, Case Western Reserve University, Cleve-

land, Ohio, October 1989.

[58] Newman, W. S. and Branicky, M. S., “Experiments in Reflex Control for
Industrial Manipulators,” in Proceedings of International Conference on
Robotics and Automation, pages 266-271, May 1990.

[59]

[60]

[61]

[62]

[63]

[64]

[66]

[68]

[69]

276

Newman, W. S. and Branicky, M. S., “Real-Time Configuration-Space
Transforms for Obstacle Avoidance,” The International Journal of

Robotics Research, 10(6):650-667, December 1991.

Nilsson, N., “A Mobile Automaton: An Application of Artificial Intelli-
gence Techniques,” in Proceedings of the 1st International Joint Confer-
ence on Artificial Intelligence, pages 509-520, 1969.

()’Dfmlaing, C., Sharir, M., and Yap, C., “Retraction: A New Approach
to Motion Planning,” in Proceedings of the 15th ACM Symposium on the
Theory of Computing, pages 207-220, 1983.

Paden, B., Mees, A., and Fisher, M., “Path Planning Using a Jacobian—
Based Freespace Generation Algorithm,” in Proceedings of International
Conference on Robotics and Automation, pages 1732-1737, May 1989.

Pavlov, V. and Voronin, A., “The Method of Potential Functions for Cod-
ing Constraints of the External Space in an Intelligent Mobile Robot,” in
Soviet Auto. Cont. 6, page , 1984.

Payton, D., “An Architechture for Reflexive Autonomous Vehicle Con-
trol,” in Proceedings of International Conference on Robotics and Au-
tomation, pages 1838-1845, April 1986.

Rimon, E. and Koditschek, D. E., “The Construction of Analytic Diffeo-
morphisms for Exact Robot Navigation on Star Worlds,” in Proceedings

of International Conference on Robotics and Automation, pages 21-26,

April 1988.

Schwarz, J. and Sharir, M., “On the ‘Piano Movers’ Problem: 1. The Case
if a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal
Barriers,” Communications on Pure and Applied Mathematics, 36:345—
398, 1983.

Schwarz, J. and Sharir, M., “On the ‘Piano Movers’ Problem: II. Gen-
eral Techniques for Computing Topological Properties of Real Algebraic
Manifolds,” Advances in Applied Mathematics, 298-351, 1983.

Seraji, H., “Configuration Control of Redundant Manipulators: Theory
and Implementaion,” IFEE Transactions on Robotics and Automation,

5(4):472-490, August 1989.

Slotine, J. E. and 11, W., Applied Nonlinear Control, chapter Fundamen-
tals of Lyapunov Theory, pages 41-99. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey 07632, 1991.

277

[70] Tomovic, R., Bekey, G., and Karplus, W., “A Strategy for Grasp Syn-
thesis with Multifingered Robot Hands,” in Proceedings of International
Conference on Robotics and Automation, pages 83-89, April 1987.

[71] Tomovic, R. and Boni, G., “An Adaptive Artificial Hand,” IRA Transac-
tions on Automatic Control, ACT:3-10, 1962.

[72] Tomovic, R. and Stojilkovic, Z., “Multifunctional Terminal Device with
Adaptive Grasping Force,” Automatica, 11:567, 1975.

[73] Vidyasagar, M. M., Nonlinear Systems Analysis. Prentice-Hall, Inc., En-
glewood Cliffs, New Jersey 07632, 2nd ed edition, 1993.

[74] Wikman, T. S., Branicky, M. S., and Newman, W. S., “Reflex Control
for Robot System Preservation, Reliability, and Autonomy,” Flectrical
Engineering and Computers an International Journal, Pending():, 1994.

[75] Wikman, T. S., Branicky, M. S., and Newman, W. S., “Reflexive Collision
Avoidance: A Generalized Approach,” in Proceedings of International
Conference on Robotics and Automation, pages 31-36, May 1993.

[76] Wikman, T. S. and Newman, W. S., “A Fast, On-Line Collision Avoid-
ance Method for a Kinematically Redundant Manipulator Based on Re-

flex Control,” in Proceedings of International Conference on Robotics and
Automation, pages 261-267, May 1992.

[77] Wikman, T. S. and Newman, W. S., “Reflex Control for Robot System
Preservation and Reliability,” in Proceedings of the 1992 International

Symposium on Robotics and Manufacturing, pages 979-986, Santa Fe,
NM, November 1992.

[78] Wikman, T. S. and Newman, W. S., “Ultrasound Based World Mapping
Using Reflex Control,” Report, Center for Automation and Intelligent
Systems Research, Case Western Reserve University, Cleveland, Ohio,

May 1994.
[79] Wong, H. C. and Orin, D. E., “Reflex Control of the prototype leg dur-

ing contact and slippage,” in Proceedings of International Conference on
Robotics and Automation, pages 808-813, April 1988.

[80] Wu, E., Hwang, J., and Chladek, J., “Fault Tolerant Joint Development
for the Space Shuttle Remote Manipulator System: Analysis and Experi-
ment,” in Fourth International Symposium on Robotics and Manufactur-

ing, pages 505-510, November 1992.

